187 research outputs found

    Prediction of plasma sodium changes in the acutely ill patients: the potential role of tissue sodium content.

    Get PDF
    BACKGROUND Rapid correction of dysnatremias can result in neurological complications. Therefore, various formulas are available to predict changes in plasma sodium concentration ([Na+]) after treatment, but these have been shown to be inaccurate. This could be explained by sodium acumulation in skin and muscle tissue, which is not explicitly considered in these formulas. We assessed the association between clinical and biochemical factors related to tissue sodium accumulation and the discrepancy between predicted and measured plasma [Na+]. METHODS We used data from an intensive care unit (ICU) cohort with complete data on sodium, potassium, and water balance. The predicted plasma [Na+] was calculated using the Barsoum-Levine (BL) and the Nguyen-Kurtz (NK) formula. We calculated the discrepancy between predicted and measured plasma sodium and fitted a linear mixed-effect model to investigate its association with factors related to tissue sodium accumulation. RESULTS We included 594 ICU days of sixty-three patients in our analysis. The mean plasma [Na+] at baseline was 147±6 mmol/L. The median (IQR) discrepancy between predicted and measured plasma [Na+] was 3.14 mmol/L (1.48, 5.55) and 3.53 mmol/L (1.81, 6.44) for the BL and NK formulas, respectively. For both formulas, estimated total body water (p=0.027), initial plasma [Na+] (p<0.001) and plasma [Na+] change (p<0.001) were associated with the discrepancy between predicted and measured plasma [Na+]. CONCLUSION In this ICU cohort, initial plasma [Na+], total body water, and plasma [Na+] changes, all factors that are related to tissue sodium accumulation, were associated with the inaccurateness of plasma [Na+] prediction

    Reduced Plasticity in Coupling Strength in the Aging SCN Clock as Revealed by Kuramoto Modeling

    Get PDF
    The mammalian circadian clock is located in the suprachiasmatic nucleus (SCN) and consists of a network of coupled neurons, which are entrained to the environmental light-dark cycle. The phase coherence of the neurons is plastic and driven by the duration of daylight. With aging, the capacity to behaviorally adapt to seasonal changes in photoperiod reduces. The mechanisms underlying photoperiodic adaptation are largely unknown, but are important to unravel for the development of novel interventions to improve the quality of life of the elderly. We analyzed the phase coherence of single-cell PERIOD2::LUCIFERASE (PER2::LUC) expression rhythms in the SCN of young and old mice entrained to either long or short photoperiod. The phase coherence was used as input to a 2-community noisy Kuramoto model to estimate the coupling strength between and within neuronal subpopulations. The model revealed a correlation between coupling strength and photoperiod-induced changes in the phase relationship among neurons, suggesting a functional link. We found that the SCN of young mice adapts in coupling strength over a large range, with weak coupling in long photoperiod (LP) and strong coupling in short photoperiod (SP). In aged mice, we also found weak coupling in LP, but a reduced capacity to reach strong coupling in SP. The inability to respond with an increase in coupling strength suggests that manipulation of photoperiod is not a suitable strategy to enhance clock function with aging. We conclude that the inability of aged mice to reach strong coupling contributes to deficits in behavioral adaptation to seasonal changes in photoperiod. Circadian clocks in health and diseas

    Ethnicity and socioeconomic status are related to dietary patterns at age 5 in the Amsterdam born children and their development (ABCD) cohort

    Get PDF
    Background: Health inequalities are already present at young age and tend to vary with ethnicity and socioeconomic status (SES). Diet is a major determinant of overweight, and studying dietary patterns as a whole in relation to overweight rather than single nutrients or foods has been suggested. We derived dietary patterns at age 5 and determined whether ethnicity and SES were both related to these dietary patterns. Methods: We analysed 2769 validated Food Frequency Questionnaires filled in by mothers of children (5.7 ± 0.5y) in the Amsterdam Born Children and their Development (ABCD) cohort. Food items were reduced to 41 food groups. Energy adjusted intake per food group (g/d) was used to derive dietary patterns using Principal Component Analysis and children were given a pattern score for each dietary pattern. We defined 5 ethnic groups (Dutch, Surinamese, Turkish, Moroccan, other ethnicities) and 3 SES groups (low, middle, high, based on maternal education). Multivariate ANOVA, with adjustment for age, gender and maternal age, was used to test potential associations between ethnicity or SES and dietary pattern scores. Post-hoc analyses with Bonferroni adjustment were used to examine differences between groups. Results: Principal Component Analysis identified 4 dietary patterns: a snacking, full-fat, meat and healthy dietary pattern, explaining 21% of the variation in dietary intake. Ethnicity was related to the dietary pattern scores (p < 0.01): non-Dutch children scored high on snacking and healthy pattern, whereas Turkish children scored high on full-fat and Surinamese children on the meat pattern. SES was related to the snacking, full-fat and meat patterns (p < 0.01): low SES children scored high on the snacking and meat pattern and low on the full-fat pattern. Conclusions: This study indicates that both ethnicity and SES are relevant for dietary patterns at age 5 and may enable more specific nutrition education to specific ethnic and low socioeconomic status target groups

    Effect of high-salt diet on blood pressure and body fluid composition in patients with type 1 diabetes: randomized controlled intervention trial

    Get PDF
    INTRODUCTION: Patients with type 1 diabetes are susceptible to hypertension, possibly resulting from increased salt sensitivity and accompanied changes in body fluid composition. We examined the effect of a high-salt diet (HSD) in type 1 diabetes on hemodynamics, including blood pressure (BP) and body fluid composition. RESEARCH DESIGN AND METHODS: We studied eight male patients with type 1 diabetes and 12 matched healthy controls with normal BP, body mass index, and renal function. All subjects adhered to a low-salt diet and HSD for eight days in randomized order. On day 8 of each diet, extracellular fluid volume (ECFV) and plasma volume were calculated with the use of iohexol and 125I-albumin distribution. Hemodynamic measurements included BP, cardiac output (CO), and systemic vascular resistance. RESULTS: After HSD, patients with type 1 diabetes showed a BP increase (mean arterial pressure: 85 (5) mm Hg vs 80 (3) mm Hg; p<0.05), while BP in controls did not rise (78 (5) mm Hg vs 78 (5) mm Hg). Plasma volume increased after HSD in patients with type 1 diabetes (p<0.05) and not in controls (p=0.23). There was no significant difference in ECFV between diets, while HSD significantly increased CO, heart rate (HR) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) in type 1 diabetes but not in controls. There were no significant differences in systemic vascular resistance, although there was a trend towards an HSD-induced decrease in controls (p=0.09). CONCLUSIONS: In the present study, patients with type 1 diabetes show a salt-sensitive BP rise to HSD, which is accompanied by significant increases in plasma volume, CO, HR, and NT-proBNP. Underlying mechanisms for these responses need further research in order to unravel the increased susceptibility to hypertension and cardiovascular disease in diabetes. TRIAL REGISTRATION NUMBERS: NTR4095 and NTR4788

    An Automated Method to Quantify Microglia Morphology and Application to Monitor Activation State Longitudinally In Vivo

    Get PDF
    Microglia are specialized immune cells of the brain. Upon insult, microglia initiate a cascade of cellular responses including a characteristic change in cell morphology. To study the dynamics of microglia immune response in situ, we developed an automated image analysis method that enables the quantitative assessment of microglia activation state within tissue based solely on cell morphology. Per cell morphometric analysis of fluorescently labeled microglia is achieved through local iterative threshold segmentation, which reduces errors caused by signal-to-noise variation across large volumes. We demonstrate, utilizing systemic application of lipopolysaccharide as a model of immune challenge, that several morphological parameters, including cell perimeter length, cell roundness and soma size, quantitatively distinguish resting versus activated populations of microglia within tissue comparable to traditional immunohistochemistry methods. Furthermore, we provide proof-of-concept data that monitoring soma size enables the longitudinal assessment of microglia activation in the mouse neocortex imaged via 2-photon in vivo microscopy. The ability to quantify microglia activation automatically by shape alone allows unbiased and rapid analysis of both fixed and in vivo central nervous system tissue
    • …
    corecore