100 research outputs found

    The acute mania of King George III: A computational linguistic analysis.

    Get PDF
    We used a computational linguistic approach, exploiting machine learning techniques, to examine the letters written by King George III during mentally healthy and apparently mentally ill periods of his life. The aims of the study were: first, to establish the existence of alterations in the King's written language at the onset of his first manic episode; and secondly to identify salient sources of variation contributing to the changes. Effects on language were sought in two control conditions (politically stressful vs. politically tranquil periods and seasonal variation). We found clear differences in the letter corpus, across a range of different features, in association with the onset of mental derangement, which were driven by a combination of linguistic and information theory features that appeared to be specific to the contrast between acute mania and mental stability. The paucity of existing data relevant to changes in written language in the presence of acute mania suggests that lexical, syntactic and stylometric descriptions of written discourse produced by a cohort of patients with a diagnosis of acute mania will be necessary to support the diagnosis independently and to look for other periods of mental illness of the course of the King's life, and in other historically significant figures with similarly large archives of handwritten documents

    Emerging pharmacotherapy for cancer patients with cognitive dysfunction

    Get PDF
    Advances in the diagnosis and multi-modality treatment of cancer have increased survival rates for many cancer types leading to an increasing load of long-term sequelae of therapy, including that of cognitive dysfunction. The cytotoxic nature of chemotherapeutic agents may also reduce neurogenesis, a key component of the physiology of memory and cognition, with ramifications for the patient's mood and other cognition disorders. Similarly radiotherapy employed as a therapeutic or prophylactic tool in the treatment of primary or metastatic disease may significantly affect cognition. A number of emerging pharmacotherapies are under investigation for the treatment of cognitive dysfunction experienced by cancer patients. Recent data from clinical trials is reviewed involving the stimulants modafinil and methylphenidate, mood stabiliser lithium, anti-Alzheimer's drugs memantine and donepezil, as well as other agents which are currently being explored within dementia, animal, and cell culture models to evaluate their use in treating cognitive dysfunction

    Methamphetamine Preconditioning Alters Midbrain Transcriptional Responses to Methamphetamine-Induced Injury in the Rat Striatum

    Get PDF
    Methamphetamine (METH) is an illicit drug which is neurotoxic to the mammalian brain. Numerous studies have revealed significant decreases in dopamine and serotonin levels in the brains of animals exposed to moderate-to-large METH doses given within short intervals of time. In contrast, repeated injections of small nontoxic doses of the drug followed by a challenge with toxic METH doses afford significant protection against monoamine depletion. The present study was undertaken to test the possibility that repeated injections of the drug might be accompanied by transcriptional changes involved in rendering the nigrostriatal dopaminergic system refractory to METH toxicity. Our results confirm that METH preconditioning can provide significant protection against METH-induced striatal dopamine depletion. In addition, the presence and absence of METH preconditioning were associated with substantial differences in the identity of the genes whose expression was affected by a toxic METH challenge. Quantitative PCR confirmed METH-induced changes in genes of interest and identified additional genes that were differentially impacted by the toxic METH challenge in the presence of METH preconditioning. These genes include small heat shock 27 kD 27 protein 2 (HspB2), thyrotropin-releasing hormone (TRH), brain derived neurotrophic factor (BDNF), c-fos, and some encoding antioxidant proteins including CuZn superoxide dismutase (CuZnSOD), glutathione peroxidase (GPx)-1, and heme oxygenase-1 (Hmox-1). These observations are consistent, in part, with the transcriptional alterations reported in models of lethal ischemic injuries which are preceded by ischemic or pharmacological preconditioning. Our findings suggest that multiple molecular pathways might work in tandem to protect the nigrostriatal dopaminergic pathway against the deleterious effects of the toxic psychostimulant. Further analysis of the molecular and cellular pathways regulated by these genes should help to provide some insight into the neuroadaptive potentials of the brain when repeatedly exposed to drugs of abuse

    Behavioural and immunohistochemical changes following supranigral administration of sonic hedgehog in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated common marmosets

    No full text
    Sonic hedgehog (SHH) has trophic actions on dopaminergic cell cultures and protects them from MPP+ toxicity but its in vivo actions have not been explored. We now investigate the effects of unilateral supranigral administration of SHH on nigro-striatal function in 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine-treated common marmosets, SHH (0.1 or 1.0 mug) or vehicle was stereotaxically injected into the region of the right substantia nigra twice with an interval of 5 weeks between administrations. The first or second administration of low dose SHH (0.1 mug) did not significantly improve motor disability or locomotor activity compared to time-matched vehicle-treated animals. There was. however, an approximately 30% improvement in both motor disability and locomotor activity following the first administration of high dose SHH (1.0 mug). No further improvements occurred following the second high dose SHH treatment, Acute oral administration of L-3,4-dihydroxyphenylalanine (L-DOPA) produced a smaller increase in locomotor activity and greater reversal of motor disability in animals treated with SHH than occurred in vehicle-treated common marmosets. In the substantia nigra pars compacta. ipsilateral to SHH administration, the number of tyrosine hydroxylase-positive neurones was increased by 21% (P>0.05) and 57% (P>0.05) in low and high dose SHH groups respectively compared to the untreated contralateral hemisphere, There was no difference in the number of glial fibrillary acidic protein-positive cells. SHH may improve nigro-striatal function by restoring tyrosine hydroxylase positivity. This is reflected by an improvement in basal disability and a reduction in the lesion-induced response to L-DOPA. (C) 2002 IBRO, Published by Elsevier Science Ltd. All rights reserved.Peer reviewe

    Sonic hedgehog delivered by an adeno-associated virus protects dopaminergic neurones against 6-OHDA toxicity in the rat

    No full text
    Direct intracerebral administration of sonic hedgehog (SHH) reduces 6-OHDA and MPTP toxicity to nigral dopaminergic cells in rats and primates. To determine whether transfection of the DNA sequence for SHH using viral vectors also protects against 6-OHDA toxicity, a type 2 adeno-associated virus (AAV) incorporating 600 base pairs of N-terminal SHH DNA was generated to induce SHH expression in rat striatum. AAV-SHH was injected into the striatum, 3 weeks prior to the initiation of an unilateral partial 6-OHDA nigro-striatal lesion. Animals receiving 4 x 10(7) viral particles of AAV-SHH showed a reduction in (+)-amphetamine induced ipsilateral turning over 4 weeks, when compared to animals receiving vehicle or a LacZ encoding vector. Following vehicle or AAV-LacZ administration, 6-OHDA caused a marked loss of striatal dopamine content and nigral tyrosine hydroxylase (TH) immunopositive cells. Following treatment with 4 x 10(7) viral particles of AAV-SHH the loss of striatal dopamine content was reduced and there was marked preservation of nigral dopaminergic cells. However, administration of 4 x 10(8) particles of AAV-SHH did not cause a significant change in (+)-amphetamine-induced rotation, striatal dopamine levels or the number of nigral TH immunoreactive cells following 6-OHDA lesioning compared to vehicle or AAV-LacZ treated animals. The results show that SHH delivered via a viral vector can protect dopaminergic neurons against 6-OHDA toxicity and suggest that this could be developed into a novel treatment for PD. However, the effects maybe dose limited due to uncoupling of hedgehog receptor signalling at higher levels of SHH expression.Peer reviewe
    • …
    corecore