4,696 research outputs found

    An information adaptive system study report and development plan

    Get PDF
    The purpose of the information adaptive system (IAS) study was to determine how some selected Earth resource applications may be processed onboard a spacecraft and to provide a detailed preliminary IAS design for these applications. Detailed investigations of a number of applications were conducted with regard to IAS and three were selected for further analysis. Areas of future research and development include algorithmic specifications, system design specifications, and IAS recommended time lines

    Coverage-dependent adsorption sites for K/Cu(001) and Cs/Cu(001) determined by surface X-ray diffraction

    Get PDF
    Surface X-ray diffraction has been used to analyze in situ the room-temperature adsorption behaviour and the structure of K and Cs on Cu(100) at submonolayer coverages. Adsorption of K takes place in fourfold hollow sites up to coverages of about 0.25 monolayers (ML), where 1 ML corresponds to 1.53 × 1015 atoms/cm2. At higher coverages the formation of a quasi-hexagonal incommensurate adlayer is observed. In contrast, for Cs adsorption we observe from the very beginning the formation of the quasi-hexagonal structure up to the completion of the adlayer at about 0.30 ML. For K adsorption in the hollow sites we determine an adsorption height, d = 2.25(15) Å, corresponding to an effective K radius of reff = 1.6(1) Å close to the ionic radius of 1.33 Å. We do not observe a change in the effective radius as a function of coverage. For the quasi-hexagonal Cs structure we find an (average) adsorption height d = 2.94 Å corresponding to an effective radius of reff = 2.18 and 1.93 Å, for the limiting ca hollow- and bridge-site adsorption, respectively. The analysis of the superlattice reflections corresponding to the quasi-hexagonal incommensurate structures indicated that the K adlayer is strongly modulated. The first Fourier component of the substrate-induced modulation was determined to u01 = 1.29(3) Å. In contrast, for Cs/Cu(001) static modulation is much less important (u01 0.2 Å). Variation of the Cs adlayer density by changing the substrate temperature allows continuous expansion and contraction of the adsorbate unit cell. No commensurate-incommensurate transition has been observed

    A novel technique for the direct determination of carrier diffusion lengths in GaAs/AlGaAs heterostructures using cathodoluminescence

    Get PDF
    A new technique for determining carrier diffusion lengths in direct gap semiconductors by cathodoluminescence measurement is presented. Ambipolar diffusion lengths are determined for GaAs quantum well material, bulk GaAs, and Al_xGa_(1-x)As with x up to 0.38. A large increase in the diffusion length is found as x approaches 0.38 and is attributed to an order of magnitude increase in lifetime

    Direct determination of the ambipolar diffusion length in GaAs/AlGaAs heterostructures by cathodoluminescence

    Get PDF
    A new technique for determining carrier diffusion lengths by cathodoluminescence measurements is presented. The technique is extremely accurate and can be applied to a variety of structures. Ambipolar diffusion lengths are determined for GaAs quantum well material, bulk GaAs, Al0.21Ga0.79As, and Al0.37Ga0.63As. A large increase in the diffusion length is found for Al0.37Ga0.63As and is attributed to an order of magnitude increase in lifetime

    Effect of Al mole fraction on carrier diffusion lengths and lifetimes in AlxGa1−xAs

    Get PDF
    The ambipolar diffusion length and carrier lifetime are measured in AlxGa1−xAs for several mole fractions in the interval 0<x<0.38. These parameters are found to have significantly higher values in the higher mole fraction samples. These increases are attributed to occupation of states in the indirect valleys, and supporting calculations are presented

    Fibrin prestress due to platelet aggregation and contraction increases clot stiffness

    Get PDF
    Efficient hemorrhagic control is attained through the formation of strong and stable blood clots at the site of injury. Although it is known that platelet-driven contraction can dramatically influence clot stiffness, the underlying mechanisms by which platelets assist fibrin in resisting external loads are not understood. In this study, we delineate the contribution of platelet-fibrin interactions to clot tensile mechanics using a combination of new mechanical measurements, image analysis, and structural mechanics simulation. Based on uniaxial tensile test data using custom-made microtensometer and fluorescence microscopy of platelet aggregation and platelet-fibrin interactions, we show that integrin-mediated platelet aggregation and actomyosin-driven platelet contraction synergistically increase the elastic modulus of the clots. We demonstrate that the mechanical and geometric response of an active contraction model of platelet aggregates compacting vicinal fibrin is consistent with the experimental data. The model suggests that platelet contraction induces prestress in fibrin fibers and increases the effective stiffness in both cross-linked and noncross-linked clots. Our results provide evidence for fibrin compaction at discrete nodes as a major determinant of mechanical response to applied loads

    Study of Magnetic Properties of A_2B^'NbO_6 (A=Ba,Sr, (BaSr): and B^'=Fe and Mn) double perovskites

    Full text link
    We have studied the magnetic properties of Ba_2FeNbO_6 and Ba_2MnNbO_6. it is seen that Ba_2FeNbO_6 is an antiferromagnet with a weak ferromagnetic behaviour at 5K while Ba_2MnNbO_6 shows two magnetic transitions one at 45 K and the other at 12K. Electron spin resonance (ESR) measurements at room temperature show that the Mn compound does not show any Jahn-Teller distortion. It is also seen that the Neel temperature of the A_2FeNbO_6 (A=Ba,Sr, BaSr) compounds do not vary significantly. However variations in the average A-site ionic radius influence the formation of short range correlations that persist above T_N.Comment: 10 oages, 5 figures, MMM, to appear in J.Appl.Phy

    Double quantum dot with tunable coupling in an enhancement-mode silicon metal-oxide semiconductor device with lateral geometry

    Full text link
    We present transport measurements of a tunable silicon metal-oxide-semiconductor double quantum dot device with lateral geometry. Experimentally extracted gate-to-dot capacitances show that the device is largely symmetric under the gate voltages applied. Intriguingly, these gate voltages themselves are not symmetric. Comparison with numerical simulations indicates that the applied gate voltages serve to offset an intrinsic asymmetry in the physical device. We also show a transition from a large single dot to two well isolated coupled dots, where the central gate of the device is used to controllably tune the interdot coupling.Comment: 4 pages, 3 figures, to be published in Applied Physics Letter
    corecore