562 research outputs found

    The [OIII]++Hβ\beta Equivalent Width Distribution at z\simeq7: Implications for the Contribution of Galaxies to Reionization

    Full text link
    We quantify the distribution of [OIII]+Hβ\beta line strengths at z\simeq7 using a sample of 20 bright (MUV_{\mathrm{UV}} \lesssim -21) galaxies. We select these systems over wide-area fields (2.3 deg2^2 total) using a new colour-selection which precisely selects galaxies at z\simeq6.63-6.83, a redshift range where blue Spitzer/IRAC [3.6]-[4.5] colours unambiguously indicate strong [OIII]++Hβ\beta emission. These 20 galaxies suggest a log-normal [OIII]++Hβ\beta EW distribution with median EW = 759113+112^{+112}_{-113} A˚\mathrm{\mathring{A}} and standard deviation = 0.260.05+0.06^{+0.06}_{-0.05} dex. We find no evidence for strong variation in this EW distribution with UV luminosity. The typical [OIII]+Hβ\beta EW at z\simeq7 implied by our sample is considerably larger than that in massive star forming galaxies at z\simeq2, consistent with a shift toward larger average sSFR (4.4 Gyr1^{-1}) and lower metallicities (0.16 Z_\odot). We also find evidence for the emergence of a population with yet more extreme nebular emission ([OIII]+Hβ\beta EW>>1200 A˚\mathrm{\mathring{A}}) that is rarely seen at lower redshifts. These objects have extremely large sSFR (>>30 Gyr1^{-1}), as would be expected for systems undergoing a burst or upturn in star formation. While this may be a short-lived phase, our results suggest that 20% of the z\simeq7 population has such extreme nebular emission, implying that galaxies likely undergo intense star formation episodes regularly at z>>6. We argue that this population may be among the most effective ionizing agents in the reionization era, both in terms of photon production efficiency and escape fraction. We furthermore suggest that galaxies passing through this large sSFR phase are likely to be very efficient in forming bound star clusters.Comment: 20 pages, 11 figures. Accepted in MNRAS with minor revision

    Systolic VLSI chip for implementing orthogonal transforms, A

    Get PDF
    Includes bibliographical references.This paper describes the design of a systolic VLSI chip for the implementation of signal processing algorithms that may be decomposed into a product of simple real rotations. These include orthogonal transformations. Applications of this chip include projections, discrete Fourier and cosine transforms, and geometrical transformations. Large transforms may be computed by "tiling" together many chips for increased throughput. A CMOS VLSI chip containing 138 000 transistors in a 5x3 array of rotators has been designed, fabricated, and tested. The chip has a 32-MHz clock and performs real rotations at a rate of 30 MHz. The systolic nature of the chip makes use of fully synchronous bit-serial interconnect and a very regular structure at the rotator and bit levels. A distributed arithmetic scheme is used to implement the matrix-vector multiplication of the rotation.This work was supported by Ball Aerospace, Boulder, CO, and by the Office of Naval Research, Electronics Branch, Arlington, VA, under Contract ONR 85-K-0693

    On the ages of bright galaxies 500\sim 500 Myr after the Big Bang: insights into star formation activity at z15z \gtrsim 15 with JWST

    Full text link
    With JWST, new opportunities to study the formation and evolution of galaxies in the early Universe are now emerging. Spitzer constraints on rest-optical properties of z7z \gtrsim 7 galaxies demonstrated the power of using stellar masses and star formation histories (SFHs) of galaxies to indirectly infer the star formation history of the Universe. However, only the brightest individual objects at z8z \gtrsim 8 could be detected with Spitzer, making it difficult to robustly constrain past activity at z10z \gtrsim 10. Here, we leverage the greatly improved rest-optical sensitivity of JWST at z8z \gtrsim 8 to constrain the ages and SFHs of eleven UV-bright (MUV19.5M_\text{UV} \lesssim -19.5) galaxies selected to lie at z8.511z \sim 8.5 - 11, then investigate implications for star formation activity at z15z \gtrsim 15. We infer the properties of individual objects in our sample with two spectral energy distribution modelling codes, then infer a distribution of ages for bright z8.511z \sim 8.5 - 11 galaxies. We find a median age of 30\sim 30 Myr, younger than that inferred at z7z \sim 7 with a similar analysis, which is consistent with an evolution towards larger specific star formation rates at early times. The age distribution suggests that only 9\sim 9 percent of bright z8.511z \sim 8.5 - 11 galaxies would be similarly luminous at z15z \gtrsim 15, implying that the number density of bright galaxies declines by approximately an order of magnitude between z8.511z \sim 8.5 - 11 and z15z \sim 15. This evolution is challenging to reconcile with some early JWST results suggesting that the abundance of bright galaxies does not significantly decrease towards very early times, but we suggest this tension may be eased if young stellar populations form on top of older stellar components, or if bright galaxies at z15z \sim 15 are observed during a burst of star formation.Comment: 13 pages, 9 figure

    Rapid response tools and datasets for post-fire modeling: linking Earth Observations and process-based hydrological models to support post-fire remediation

    Get PDF
    Preparation is key to utilizing Earth Observations and process-based models to support post-wildfire mitigation. Post-fire flooding and erosion can pose a serious threat to life, property and municipal water supplies. Increased runoff and sediment delivery due to the loss of surface cover and fire-induced changes in soil properties are of great concern. Remediation plans and treatments must be developed and implemented before the first major storms in order to be effective. One of the primary sources of information for making remediation decisions is a soil burn severity map derived from Earth Observation data (typically Landsat) that reflects fire induced changes in vegetation and soil properties. Slope, soils, land cover and climate are also important parameters that need to be considered. Spatially-explicit process-based models can account for these parameters, but they are currently under-utilized relative to simpler, lumped models because they are difficult to set up and require spatially-explicit inputs (digital elevation models, soils, and land cover). Our goal is to make process-based models more accessible by preparing spatial inputs before a fire, so that datasets can be rapidly combined with soil burn severity maps and formatted for model use. We are building an online database (http://geodjango.mtri.org/geowepp /) for the continental United States that will allow users to upload soil burn severity maps. The soil burn severity map is combined with land cover and soil datasets to generate the spatial model inputs needed for hydrological modeling of burn scars. Datasets will be created to support hydrological models, post-fire debris flow models and a dry ravel model. Our overall vision for this project is that advanced GIS surface erosion and mass failure prediction tools will be readily available for post-fire analysis using spatial information from a single online site

    Searching for Extremely Blue UV Continuum Slopes at z=711z=7-11 in JWST/NIRCam Imaging: Implications for Stellar Metallicity and Ionizing Photon Escape in Early Galaxies

    Full text link
    The ultraviolet (UV) continuum slope (β\beta where fλλβ_\lambda\propto \lambda^\beta) of galaxies is sensitive to a variety of properties, from the metallicity and age of the stellar population to the attenuation from dust through the galaxy. Considerable attention has focused on identifying reionization-era galaxies with very blue UV slopes (β<3\beta<-3). Not only do such systems provide a signpost of low metallicity stars, but they also identify galaxies that likely have ionizing photons leaking from their HII regions as such blue UV slopes can only be seen if the reddening effect of nebular continuum has been diminished. In this paper we present a search for reionization-era galaxies with very blue UV colors in recent JWST/NIRCam imaging of the EGS field. We characterize UV slopes for a large sample of z711z\simeq 7-11 galaxies, finding a median value of β=2.1\beta =-2.1. Three of the lower luminosity (MUV19.5_{\rm{UV}}\simeq -19.5) and lower stellar mass (5-6×107\times10^7M_\odot) systems exhibit both extremely blue UV slopes (β=3.1\beta=-3.1 to 3.2-3.2) and rest-optical photometry indicating weak nebular line emission. Each system is very compact (re<_e<260 pc) with very high star formation rate surface densities. We model the SEDs with a suite of BEAGLE models with varying levels of ionizing photon escape. The SEDs cannot be reproduced with our fiducial (fesc,HII_{\rm{esc,HII}}=0) or alpha enhanced (Z<ZISM_*<Z_{\rm{ISM}}) models. The combined blue UV slopes and weak nebular emission are best-fit by models with significant ionizing photon escape from HII regions (fesc,HII_{\rm{esc,HII}}=0.6-0.8) and extremely low metallicity massive stars (Z_*=0.01-0.06 Z_\odot). The discovery of these galaxies highlights the potential for JWST to identify large numbers of candidate Lyman Continuum leaking galaxies in the reionization era and suggests low metallicity stellar populations may be veryComment: 11 pages, 8 figures, 2 tables; Submitted to Ap

    A JWST/NIRCam Study of Key Contributors to Reionization: The Star-forming and Ionizing Properties of UV-faint z78z\sim7-8 Galaxies

    Full text link
    Spitzer/IRAC imaging has revealed that the brightest z78z\sim7-8 galaxies often exhibit young ages and strong nebular line emission, hinting at high ionizing efficiency among early galaxies. However, IRAC's limited sensitivity has long hindered efforts to study the fainter, more numerous population often thought largely responsible for reionization. Here we use CEERS JWST/NIRCam data to characterize 116 UV-faint (median MUV=19.5_{UV}=-19.5) z6.58z\sim6.5-8 galaxies. The SEDs are typically dominated by young (\sim10-50 Myr), low-mass (M108 MM_\ast\sim10^8\ M_\odot) stellar populations, and we find no need for extremely high stellar masses (1011M\sim10^{11} M_\odot). Considering previous studies of UV-bright (MUV22_{UV}\sim-22) z78z\sim7-8 galaxies, we find evidence for a strong (5-10×\times) increase in specific star formation rate toward lower luminosities (median sSFR=103 Gyr1^{-1} in CEERS). The larger sSFRs imply a more dominant contribution from OB stars in the relatively numerous UV-faint population, perhaps suggesting that these galaxies are very efficient ionizing agents (median ξion=1025.7\xi_{ion}=10^{25.7} erg1^{-1} Hz). In spite of their much larger sSFRs, we find no significant increase in [OIII]++Hβ\beta EWs towards fainter MUV_{UV} (median \approx780 A˚\mathring{A}). If confirmed, this may indicate that a substantial fraction of our CEERS galaxies possess extremely low metallicities (\lesssim3% ZZ_\odot) where [OIII] emission is suppressed. Alternatively, high ionizing photon escape fractions or bursty star formation histories can also weaken the nebular lines in a subset of our CEERS galaxies. While the majority of our objects are very blue (median β=2.0\beta=-2.0), we identify a significant tail of very dusty galaxies (β1\beta\sim-1) at \approx0.5LUVL_{UV}^\ast which may contribute significantly to the z78z\sim7-8 star formation rate density.Comment: Accepted in MNRAS. Updated to use the most recent NIRCam zeropoints. There are no significant changes to the conclusions relative to v

    Spontaneous Transformation of Murine Oviductal Epithelial Cells: A Model System to Investigate the Onset of Fallopian-Derived Tumors

    Get PDF
    High-grade serous carcinoma (HGSC) is the most lethal ovarian cancer histotype. The fallopian tube secretory epithelial cells (FTSECs) are a proposed progenitor cell type. Genetically altered FTSECs form tumors in mice; however, a spontaneous HGSC model has not been described. Apart from a subpopulation of genetically predisposed women, most women develop ovarian cancer spontaneously, which is associated with aging and lifetime ovulations. A murine oviductal cell line (MOELOW) was developed and continuously passaged in culture to mimic cellular aging (MOEHIGH). The MOEHIGH cellular model exhibited a loss of acetylated tubulin consistent with an outgrowth of secretory epithelial cells in culture. MOEHIGH cells proliferated significantly faster than MOELOW, and the MOEHIGH cells produced more 2D foci and 3D soft agar colonies as compared to MOELOW. MOEHIGH were xenografted into athymic female nude mice both in the subcutaneous and the intraperiteonal compartments. Only the subcutaneous grafts formed tumors that were negative for cytokeratin, but positive for oviductal markers such as oviductal glycoprotein 1 and Pax8. These tumors were considered to be poorly differentiated carcinoma. The differential molecular profiles between MOEHIGH and MOELOW were determined using RNA-Seq and confirmed by protein expression to uncover pathways important in transformation, like the p53 pathway, the FOXM1 pathway, WNT signaling, and splicing. MOEHIGH had enhanced protein expression of c-myc, Cyclin E, p53 and FOXM1 with reduced expression of p21. MOEHIGH were also less sensitive to cisplatin and DMBA, which induce lesions typically repaired by base-excision repair. A model of spontaneous tumorogenesis was generated starting with normal oviductal cells. Their transition to cancer involved alterations in pathways associated with high-grade serous cancer in humans

    Radio and Far-IR Emission Associated with a Massive Star-forming Galaxy Candidate at z\simeq6.8: A Radio-Loud AGN in the Reionization Era?

    Get PDF
    We report the identification of radio (0.144-3 GHz), mid-IR, far-IR, and sub-mm (24-850μ\mum) emission at the position of one of 41 UV-bright (MUV21.25_\mathrm{UV}^{}\lesssim-21.25) z6.66.9z\simeq6.6-6.9 Lyman-break galaxy candidates in the 1.5 deg2^2 COSMOS field. This source, COS-87259, exhibits a sharp flux discontinuity (factor >>3) between two narrow/intermediate bands at 9450 and 9700 Angstroms and is undetected in all nine bands blueward of 9600 Angstroms, as expected from a Lyman-alpha break at z6.8z\simeq6.8. The full multi-wavelength (X-ray through radio) data of COS-87529 can be self-consistently explained by a very massive (M=1010.8_{\ast}=10^{10.8} M_{\odot}) and extremely red (rest-UV slope β=0.59\beta=-0.59) z6.8z\simeq6.8 galaxy with hyperluminous infrared emission (LIR=1013.6_{\mathrm{IR}}=10^{13.6} L_{\odot}) powered by both an intense burst of highly-obscured star formation (SFR\approx1800 M_{\odot} yr1^{-1}) and an obscured (τ9.7μm=7.7±2.5\tau_{\mathrm{9.7\mu m}}=7.7\pm2.5) radio-loud (L1.4 GHz1025.4_{\mathrm{1.4\ GHz}}\approx10^{25.4} W Hz1^{-1}) AGN. The radio emission is compact (1.04±\pm0.12 arcsec) and exhibits an ultra-steep spectrum between 1.32-3 GHz (α=1.570.21+0.22\alpha=-1.57^{+0.22}_{-0.21}) that flattens at lower frequencies (α=0.860.16+0.22\alpha=-0.86^{+0.22}_{-0.16} between 0.144-1.32 GHz), consistent with known z>4z>4 radio galaxies. We also demonstrate that COS-87259 may reside in a significant (11×\times) galaxy overdensity at z6.66.9z\simeq6.6-6.9, as common for systems hosting radio-loud AGN. Nonetheless, a spectroscopic redshift will ultimately be required to establish the true nature of COS-87259 as we cannot yet completely rule out low-redshift solutions. If confirmed to lie at z6.8z\simeq6.8, the properties of COS-87259 would be consistent with a picture wherein AGN and highly-obscured star formation activity are fairly common among very massive (M>1010_{\ast}>10^{10} M_{\odot}) reionization-era galaxies.Comment: 14 pages, 6 figures. Accepted in MNRAS with minor revisions. This accepted version considers very recent data from LOFAR and MeerKAT which improve our analyses on the radio slope and luminosit

    ALMA Confirmation of an Obscured Hyperluminous Radio-Loud AGN at z=6.853z=6.853 Associated with a Dusty Starburst in the 1.5 deg2^2 COSMOS Field

    Full text link
    We present band 6 ALMA observations of a heavily-obscured radio-loud (L1.4 GHz=1025.4L_{1.4\ \mathrm{GHz}}=10^{25.4} W Hz1^{-1}) AGN candidate at zphot=6.83±0.06z_\mathrm{phot}=6.83\pm0.06 found in the 1.5 deg2^2 COSMOS field. The ALMA data reveal detections of exceptionally strong [CII]158μ\mum (z[CII]=6.8532z_\mathrm{[CII]}=6.8532) and underlying dust continuum emission from this object (COS-87259), where the [CII] line luminosity, line width, and 158μ\mum continuum luminosity are comparable to that seen from z7z\sim7 sub-mm galaxies and quasar hosts. The 158μ\mum continuum detection suggests a total infrared luminosity of 9×10129\times10^{12} LL_\odot with corresponding very large obscured star formation rate (1300 MM_\odot/yr) and dust mass (2×1092\times10^9 MM_\odot). The strong break seen between the VIRCam and IRAC photometry perhaps suggests that COS-87259 is an extremely massive reionization era galaxy with M1.7×1011M_\ast\approx1.7\times10^{11} MM_\odot. Moreover, the MIPS, PACS, and SPIRE detections imply that this object harbors an AGN that is heavily obscured (τ9.7μm=2.3\tau_{_{\mathrm{9.7\mu m}}}=2.3) with a bolometric luminosity of approximately 5×10135\times10^{13} LL_\odot. Such a very high AGN luminosity suggests this object is powered by an \approx1.6 ×\times 109^9 MM_\odot black hole if accreting near the Eddington limit, and is effectively a highly-obscured version of an extremely UV-luminous (M145027.3M_{1450}\approx-27.3) z7z\sim7 quasar. Notably, these z7z\sim7 quasars are an exceedingly rare population (\sim0.001 deg2^{-2}) while COS-87259 was identified over a relatively small field. Future very wide-area surveys with, e.g., Roman and Euclid have the potential to identify many more extremely red yet UV-bright z7z\gtrsim7 objects similar to COS-87259, providing richer insight into the occurrence of intense obscured star formation and supermassive black hole growth among this population.Comment: 12 pages, 7 figures, 1 table. Updated to accepted version (MNRAS
    corecore