345 research outputs found

    Does the ‘Mountain Pasture Product’ claim affect local cheese acceptability?

    Get PDF
    This paper aims to explore the impact of “mountain pasture product” information on the acceptability of local protected designation of origin (PDO) cheese produced from the raw milk of cows grazing in mountain pastures (P) or reared in valley floor stalls (S). A total of 156 consumers (55% males, mean age 41 years) were asked to evaluate their overall liking on a 9-point hedonic scale of four samples: Cheeses P and S were presented twice with different information about the origin of the milk (cows grazing on mountain pasture or reared in a valley floor stall). Demographics, consumer habits, and opinions on mountain pasture practice (MPP), attitudes towards sustainability, and food-related behaviours (i.e., diet, food waste production, organic food, and zero food miles products purchase) were recorded and used to segment consumers. The cheeses were all considered more than acceptable, even though they were found to be significantly different in colour and texture by instrumental analyses. In the whole consumer panel, the cheese P was preferred, while in consumer segments less attentive to product characteristics, this effect was not significant. External information had a strong effect: Overall liking was significantly higher in cheeses presented as “mountain pasture product”, both in the whole panel and in consumer segments with different attitudes (except for those with a low opinion of MPP

    Composite porosity characterization using X-ray edge illumination phase contrast and ultrasonic techniques

    Get PDF
    Owing to their combination of low weight and high strength, carbon fiber reinforced composites are widely used in the aerospace industry, including for primary aircraft structures. Porosity introduced by the manufacturing process can compromise structural performance and integrity, with a maximum porosity content of 2% considered acceptable for many aerospace applications. The main nondestructive evaluation (NDE) techniques used in industry are ultrasonic imaging and X-ray computed tomography, however both techniques have limitations. Edge Illumination X-ray Phase Contrast Imaging (EI XPCi) is a novel technique that exploits the phase effects induced by damage and porosity on the X-ray beam to create improved contrast. EI XPCi is a differential (i.e., sensitive to the first derivative of the phase), multi-modal phase method that uses a set of coded aperture masks to acquire and retrieve the absorption, refraction, and ultra-small-angle scattering signals, the latter arising from sub-pixel sample features. For carbon fiber-reinforced woven composite specimens with varying levels of porosity, porosity quantification obtained through various signals produced by EI XPCi was compared to ultrasonic immersion absorption C-scans and matrix digestion. The standard deviation of the differential phase is introduced as a novel signal for the quantification of porosity in composite plates, with good correlation to ultrasonic attenuation

    Composite impact damage detection and characterization using ultrasound and X-ray NDE techniques

    Get PDF
    Combining low weight and high strength, carbon fiber reinforced composites are widely used in the aerospace industry, including for primary aircraft structures. Barely visible impact damage can compromise the structural integrity and potentially lead to failures. Edge Illumination (EI) X-ray Phase Contrast imaging (XPCi) is a novel X-ray imaging technique that uses the phase effects induced by damage to create improved contrast. For a small cross-ply composite specimen with impact damage, damage detection was compared to ultrasonic immersion C-scans. Different defect types could be located and identified, verified from the conventional ultrasonic NDE measurement

    Reliable material characterisation at low x-ray energy through the phase-attenuation duality

    Get PDF
    We present a comparison of between two polychromatic X-ray imaging techniques used to characterise materials: dual energy (DE) attenuation and phase-attenuation (PA), the latter being implemented via a scanning-based Edge Illumination system. The system-independent method to extract electron density and effective atomic number developed by S.G. Azevedo et al IEEE Transactions on nuclear science, Vol. 63, 341 (2016) - SIRZ - is employed for the analysis of planar images, with the same methodology being used for both approaches. We show PA to be more reliable at low energy X-ray spectra (40 kVp), where conventional DE breaks down due to insufficient separation of the energies used in measurements, and to produce results comparable with “standard” DE implemented at high energy (120 kVp), therefore offering a valuable alternative in applications where the use of high x-ray energy is impractical

    Post-Acquisition Mask Misalignment Correction for Edge Illumination X-ray Phase Contrast Imaging

    Get PDF
    Edge illumination x-ray phase contrast imaging uses a set of apertured masks to translate phase effects into variation of detected intensity. While the system is relatively robust against misalignment, mask movement during acquisition can lead to gradient artifacts. A method has been developed to correct the images by quantifying the misalignment post-acquisition and implementing correction maps to remove the gradient artifact. Images of a woven carbon fiber composite plate containing porosity were used as examples to demonstrate the image correction process. The gradient formed during image acquisition was removed without affecting the image quality, and results were subsequently used for quantification of porosity, indicating that the gradient correction did not affect the quantitative content of the images

    Enhanced composite plate impact damage detection and characterisation using X-Ray refraction and scattering contrast combined with ultrasonic imaging

    Get PDF
    Ultrasonic imaging and radiography are widely used in the aerospace industry for non-destructive evaluation of damage in fibre-reinforced composites. Novel phase-based X-ray imaging methods use phase effects occurring in inhomogeneous specimens to extract additional information and achieve improved contrast. Edge Illumination employs a coded aperture system to extract refraction and scattering driven signals in addition to conventional absorption. Comparison with ultrasonic immersion C-scan imaging and with a commercial X-ray CT system for impact damage analysis in a small cross-ply carbon fibre-reinforced plate sample was performed to evaluate the potential of this new technique. The retrieved refraction and scattering signals provide complementary information, revealing previously unavailable insight on the damage extent and scale, not observed in the conventional X-ray absorption and ultrasonic imaging, allowing improved damage characterisation

    Quantification of porosity in composite plates using planar X-ray phase contrast imaging

    Get PDF
    The application of planar Edge-Illumination X-ray Phase-Contrast imaging (EI-XPCi) for the non-destructive quantification of porosity in carbon fiber reinforced polymer (CFRP) specimens, a significant concern in aerospace applications, was investigated. The method enables fast, planar (2D) scans providing access to large samples. A set of woven CFRP plates with porosity content ranging from 0.7% to 10.7% was examined. In addition to standard X-ray attenuation, EI-XPCi provides differential phase and dark-field signals, sensitive to inhomogeneities and interfaces at scales above and below the system spatial resolution, respectively. The correlation with the porosity content from matrix digestion obtained from the dark-field signal was comparable to that from ultrasonic attenuation. The novel analysis of the standard deviation of differential phase (STDP), sensitive to inhomogeneities above the system resolution (approximately 12 μm), resulted in a very high correlation (R2 = 0.995) with the matrix digestion porosity content, outperforming ultrasonic attenuation measurements
    corecore