1,854 research outputs found

    Technologies numériques dans l\u27enseignement supérieur, entre défis et opportunités (Les)

    Get PDF
    Dossier du service Veille et analyses de l’IFÉ (n°78, octobre 2012), paru sous le titre « Les technologies numériques dans l\u27enseignement supérieur, entre défis et opportunités

    Jeunesses 2.0 : les pratiques relationnelles au coeur des médias sociaux

    Get PDF
    Dossier du service Veille et analyses de l’IFÉ (n°71, février 2012), paru sous le titre « Jeunesses 2.0 : les pratiques relationnelles au coeur des médias sociaux »

    Absorption, refraction and scattering retrieval with an edge-illumination-based imaging setup

    Get PDF
    We have recently developed a new method based on edge-illumination for retrieving a three-image representation of the sample. A minimum of three intensity projections are required in order to retrieve the transmission, refraction and ultra-small-angle scattering properties of the sample. Here we show how the method can be adapted for particular cases in which some degree of a priori information about the sample might be available, limiting the number of required projections to two. Moreover, an iterative algorithm to correct for non-ideal optical elements is proposed and tested on numerical simulations, and finally validated on experimental data

    Edge-illumination X-ray dark-field imaging for visualising defects in composite structures

    Get PDF
    Low velocity impact can lead to barely visible and difficult to detect damage such as fibre and matrix breakage or delaminations in composite structures. Drop-weight impact damage in a cross-ply carbon fibre laminate plate was characterized using ultrasonic C-scan measurements. This was compared to the results provided by a novel X-ray imaging technique based on the detection of phase effects, which can be implemented with conventional equipment. Three representations of the sample are provided: absorption, differential phase and dark-field. The latter is of particular interest to detect cracks and voids of dimensions that are smaller than the spatial resolution of the imaging system. The ultrasonic C-scan showed a large delamination and additional damage along the fibre directions. The damage along the fibre directions and other small scale defects were detected from the X-ray imaging. As the system is sensitive to phase effects along one direction at a time, the acquisition of an additional scan, rotating the sample 90 degrees around the beam axis, provides information in both fibre directions. These two techniques enable access to a set of complementary information, across different length scales, which can be useful in the characterization of the defects occurring in composite structures

    Virtual edge illumination and one dimensional beam tracking for absorption, refraction, and scattering retrieval

    Get PDF
    We propose two different approaches to retrieve x-ray absorption, refraction, and scattering signals using a one dimensional scan and a high resolution detector. The first method can be easily implemented in existing procedures developed for edge illumination to retrieve absorption and refraction signals, giving comparable image quality while reducing exposure time and delivered dose. The second method tracks the variations of the beam intensity profile on the detector through a multi-Gaussian interpolation, allowing the additional retrieval of the scattering signal

    Asymmetric masks for large field-of-view and high-energy X-ray phase contrast imaging

    Get PDF
    We report on a large field of view, laboratory-based X-ray phase-contrast imaging setup. The method is based upon the asymmetric mask design that enables the retrieval of the absorption, refraction and scattering properties of the sample without the need to move any component of the imaging system. This can be thought of as a periodic repetition of a group of three (or more) apertures arranged in such a way that each laminar beam, defined by the apertures, produces a different illumination level when analysed with a standard periodic set of apertures. The sample is scanned through the imaging system, also removing possible aliasing problems that might arise from partial sample illumination when using the edge illumination technique. This approach preserves the incoherence and achromatic properties of edge illumination, removes the problems related to aliasing and it naturally adapts to those situations in clinical, industrial and security imaging where the image is acquired by scanning the sample relative to the imaging system. These concepts were implemented for a large field-of-view set of masks (20 cm × 1.5 cm and 15 cm × 1.2 cm), designed to work with a tungsten anode X-ray source operated up to 80–100 kVp, from which preliminary experimental results are presented
    corecore