114 research outputs found

    IR spectroscopy of pyridine-water structures in helium nanodroplets

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugĂ€nglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.We present the results of an IR spectroscopic study of pyridine–water heterodimer formation in helium nanodroplets. The experiments were carried out in the frequency range of the pyridine C–H stretch region (3055–3100 cm−1) and upon water deuteration in the D–O stretch region (2740–2800 cm−1). In order to come to an unambiguous assignment we have determined the angle between the permanent dipole and the vibrational transition moment of the aggregates. The experiments have been accompanied by theoretical simulations which yielded two minimum structures with a 16.28 kJ mol−1energy difference. The experimentally observed bands were assigned to two structures with different H-bonds: an N⋯H bond and a bifurcated O⋯H–C bond.DFG, FOR 618, Die Aggregation kleiner MolekĂŒle mit prĂ€zisen Methoden verstehen - Experiment und Theorie im Wechselspie

    Physical Fitness Training in Patients with Subacute Stroke (PHYS-STROKE): multicentre, randomised controlled, endpoint blinded trial

    Get PDF
    OBJECTIVE: To determine the safety and efficacy of aerobic exercise on activities of daily living in the subacute phase after stroke. DESIGN: Multicentre, randomised controlled, endpoint blinded trial. SETTING: Seven inpatient rehabilitation sites in Germany (2013-17). PARTICIPANTS: 200 adults with subacute stroke (days 5-45 after stroke) with a median National Institutes of Health stroke scale (NIHSS, range 0-42 points, higher values indicating more severe strokes) score of 8 (interquartile range 5-12) were randomly assigned (1:1) to aerobic physical fitness training (n=105) or relaxation sessions (n=95, control group) in addition to standard care. INTERVENTION: Participants received either aerobic, bodyweight supported, treadmill based physical fitness training or relaxation sessions, each for 25 minutes, five times weekly for four weeks, in addition to standard rehabilitation therapy. Investigators and endpoint assessors were masked to treatment assignment. MAIN OUTCOME MEASURES: The primary outcomes were change in maximal walking speed (m/s) in the 10 m walking test and change in Barthel index scores (range 0-100 points, higher scores indicating less disability) three months after stroke compared with baseline. Safety outcomes were recurrent cardiovascular events, including stroke, hospital readmissions, and death within three months after stroke. Efficacy was tested with analysis of covariance for each primary outcome in the full analysis set. Multiple imputation was used to account for missing values. RESULTS: Compared with relaxation, aerobic physical fitness training did not result in a significantly higher mean change in maximal walking speed (adjusted treatment effect 0.1 m/s (95% confidence interval 0.0 to 0.2 m/s), P=0.23) or mean change in Barthel index score (0 (-5 to 5), P=0.99) at three months after stroke. A higher rate of serious adverse events was observed in the aerobic group compared with relaxation group (incidence rate ratio 1.81, 95% confidence interval 0.97 to 3.36). CONCLUSIONS: Among moderately to severely affected adults with subacute stroke, aerobic bodyweight supported, treadmill based physical fitness training was not superior to relaxation sessions for maximal walking speed and Barthel index score but did suggest higher rates of adverse events. These results do not appear to support the use of aerobic bodyweight supported fitness training in people with subacute stroke to improve activities of daily living or maximal walking speed and should be considered in future guidelines. TRIAL REGISTRATION: ClinicalTrials.gov NCT01953549

    Evolution of Blood-Brain Barrier Permeability in Subacute Ischemic Stroke and Associations With Serum Biomarkers and Functional Outcome

    Get PDF
    Background and Purpose: In the setting of acute ischemic stroke, increased blood-brain barrier permeability (BBBP) as a sign of injury is believed to be associated with increased risk of poor outcome. Pre-clinical studies show that selected serum biomarkers including C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF alpha), matrix metallopeptidases (MMP), and vascular endothelial growth factors (VEGFs) may play a role in BBBP post-stroke. In the subacute phase of stroke, increased BBBP may also be caused by regenerative mechanisms such as vascular remodeling and therefore may improve functional recovery. Our aim was to investigate the evolution of BBBP in ischemic stroke using contrast-enhanced (CE) magnetic resonance imaging (MRI) and to analyze potential associations with blood-derived biomarkers as well as functional recovery in subacute ischemic stroke patients. Methods: This is an exploratory analysis of subacute ischemic stroke patients enrolled in the BAPTISe study nested within the randomized controlled PHYS-STROKE trial (interventions: 4 weeks of aerobic fitness training vs. relaxation). Patients with at least one CE-MRI before (v1) or after (v2) the intervention were eligible for this analysis. The prevalence of increased BBBP was visually assessed on T1-weighted MR-images based on extent of contrast-agent enhancement within the ischemic lesion. The intensity of increased BBBP was assessed semi-quantitatively by normalizing the mean voxel intensity within the region of interest (ROI) to the contralateral hemisphere ("normalized CE-ROI"). Selected serum biomarkers (high-sensitive CRP, IL-6, TNF-alpha, MMP-9, and VEGF) at v1 (before intervention) were analyzed as continuous and dichotomized variables defined by laboratory cut-off levels. Functional outcome was assessed at 6 months after stroke using the modified Rankin Scale (mRS). Results: Ninety-three patients with a median baseline NIHSS of 9 [IQR 6-12] were included into the analysis. The median time to v1 MRI was 30 days [IQR 18-37], and the median lesion volume on v1 MRI was 4 ml [IQR 1.2-23.4]. Seventy patients (80%) had increased BBBP visible on v1 MRI. After the trial intervention, increased BBBP was still detectable in 52 patients (74%) on v2 MRI. The median time to v2 MRI was 56 days [IQR 46-67]. The presence of increased BBBP on v1 MRI was associated with larger lesion volumes and more severe strokes. Aerobic fitness training did not influence the increase of BBBP evaluated at v2. In linear mixed models, the time from stroke onset to MRI was inversely associated with normalized CE-ROI (coefficient -0.002, Standard Error 0.007, p < 0.01). Selected serum biomarkers were not associated with the presence or evolution of increased BBBP. Multivariable regression analysis did not identify the occurrence or evolution of increased BBBP as an independent predictor of favorable functional outcome post-stroke. Conclusion: In patients with moderate-to-severe subacute stroke, three out of four patients demonstrated increased BBB permeability, which decreased over time. The presence of increased BBBP was associated with larger lesion volumes and more severe strokes. We could not detect an association between selected serum biomarkers of inflammation and an increased BBBP in this cohort. No clear association with favorable functional outcome was observed

    LUBAC deficiency perturbs TLR3 signaling to cause immunodeficiency and autoinflammation

    Get PDF
    The linear ubiquitin chain assembly complex (LUBAC), consisting of SHANK-associated RH-domain-interacting protein (SHARPIN), heme-oxidized IRP2 ubiquitin ligase-1 (HOIL-1), and HOIL-1-interacting protein (HOIP), is a critical regulator of inflammation and immunity. This is highlighted by the fact that patients with perturbed linear ubiquitination caused by mutations in the Hoip or Hoil-1 genes, resulting in knockouts of these proteins, may simultaneously suffer from immunodeficiency and autoinflammation. TLR3 plays a crucial, albeit controversial, role in viral infection and tissue damage. We identify a pivotal role of LUBAC in TLR3 signaling and discover a functional interaction between LUBAC components and TLR3 as crucial for immunity to influenza A virus infection. On the biochemical level, we identify LUBAC components as interacting with the TLR3-signaling complex (SC), thereby enabling TLR3-mediated gene activation. Absence of LUBAC components increases formation of a previously unrecognized TLR3-induced death-inducing SC, leading to enhanced cell death. Intriguingly, excessive TLR3-mediated cell death, induced by double-stranded RNA present in the skin of SHARPIN-deficient chronic proliferative dermatitis mice (cpdm), is a major contributor to their autoinflammatory skin phenotype, as genetic coablation of Tlr3 substantially ameliorated cpdm dermatitis. Thus, LUBAC components control TLR3-mediated innate immunity, thereby preventing development of immunodeficiency and autoinflammation.This work was funded by a Wellcome Trust Senior Investigator award (096831/Z/11/Z; and grant 090315 to H. Ren) and an European Research Council advanced grant (294880; H. Walczak). J. Zinngrebe received support from the Boehringer Ingelheim Fonds and N. Peltzer received funds from the Swiss National Science Foundation. B.J. Ferguson is supported by an Isaac Newton Trust/Wellcome Trust ISSF/University of Cambridge research grant. B. Dome received support from the Hungarian Scientific Research Fund (OTKA-K108465)

    ­­LUBAC deficiency perturbs TLR3 signaling to cause immunodeficiency and autoinflammation

    Get PDF
    The linear ubiquitin chain assembly complex (LUBAC), consisting of SHANK-associated RH-domain–interacting protein (SHARPIN), heme-oxidized IRP2 ubiquitin ligase-1 (HOIL-1), and HOIL-1–interacting protein (HOIP), is a critical regulator of inflammation and immunity. This is highlighted by the fact that patients with perturbed linear ubiquitination caused by mutations in the Hoip or Hoil-1 genes, resulting in knockouts of these proteins, may simultaneously suffer from immunodeficiency and autoinflammation. TLR3 plays a crucial, albeit controversial, role in viral infection and tissue damage. We identify a pivotal role of LUBAC in TLR3 signaling and discover a functional interaction between LUBAC components and TLR3 as crucial for immunity to influenza A virus infection. On the biochemical level, we identify LUBAC components as interacting with the TLR3-signaling complex (SC), thereby enabling TLR3-mediated gene activation. Absence of LUBAC components increases formation of a previously unrecognized TLR3-induced death-inducing SC, leading to enhanced cell death. Intriguingly, excessive TLR3-mediated cell death, induced by double-stranded RNA present in the skin of SHARPIN-deficient chronic proliferative dermatitis mice (cpdm), is a major contributor to their autoinflammatory skin phenotype, as genetic coablation of Tlr3 substantially ameliorated cpdm dermatitis. Thus, LUBAC components control TLR3-mediated innate immunity, thereby preventing development of immunodeficiency and autoinflammation

    Untersuchung der Aggregation kleiner Aromaten in Heliumtröpfchen mittels Stark-Feld-IR-Spektroskopie

    No full text
    In dieser Arbeit wurde die Aggregation kleiner Aromaten im Heliumtröpfchen mittels Stark-Feld-IR-Spektroskopie und ab-initio-Simulationen untersucht. Die aufgenommenen IR-Spektren von Benzol-Dimer zeigen, dass ausschließlich eine schrĂ€g, T-förmige Struktur des Benzol-Dimers im Heliumtröpfchen ausgebildet wird. Von Pyridin wurden druckabhĂ€ngige und massenaufgelöste Infrarotspektren aufgenommen. Darauf aufbauend wurde von allen IR-Banden die IntensitĂ€tsabhĂ€ngigkeit vom Einlagerungsdruck, der FeldstĂ€rke in der Stark-Multipass-Zelle und der Polarisation des Lasers untersucht. Aus der Auswertung dieser Daten konnten eindeutig Dimer-Absorptionsbanden im Spektrum identifiziert werden und von jeder dieser Schwingungsbanden der VTMA und das Dipolmoment des zugehörigen Dimers bestimmt werden. Aus der systematische Auswertung aller dieser Daten und den quantenchemischen Rechnungen konnte gezeigt werden, dass nur ein kettenförmiger Dimer ausgebildet wird

    A Compact Fiber-Coupled NIR/MIR Laser Absorption Instrument for the Simultaneous Measurement of Gas-Phase Temperature and CO, CO<sub>2</sub>, and H<sub>2</sub>O Concentration

    No full text
    A fiber-coupled, compact, remotely operated laser absorption instrument is developed for CO, CO2, and H2O measurements in reactive flows at the elevated temperatures and pressures expected in gas turbine combustor test rigs with target pressures from 1–25 bar and temperatures of up to 2000 K. The optical engineering for solutions of the significant challenges from the ambient acoustic noise (~120 dB) and ambient test rig temperatures (60 °C) are discussed in detail. The sensor delivers wavelength-multiplexed light in a single optical fiber from a set of solid-state lasers ranging from diodes in the near-infrared (~1300 nm) to quantum cascade lasers in the mid-infrared (~4900 nm). Wavelength-multiplexing systems using a single optical fiber have not previously spanned such a wide range of laser wavelengths. Gas temperature is inferred from the ratio of two water vapor transitions. Here, the design of the sensor, the optical engineering required for simultaneous fiber delivery of a wide range of laser wavelengths on a single optical line-of-sight, the engineering required for sensor survival in the harsh ambient environment, and laboratory testing of sensor performance in the exhaust gas of a flat flame burner are presented
    • 

    corecore