80 research outputs found

    Down-regulation of frizzled-7 expression decreases survival, invasion and metastatic capabilities of colon cancer cells

    Get PDF
    BackgroundThe canonical Wnt signalling pathway is activated in most sporadic colorectal cancers (CRCs). We previously reported that FZD7 functions as a receptor for the canonical Wnt signalling pathway in colon cancer cells.Methods and resultsIn this study, we examined the function of FZD7 in survival, invasion and metastatic capabilities of colon cancer cells. FZD7_siRNA transfection decreased cell viability of HT-29 and HCT-116 colon cancer cells. Expression of c-Jun, phosphorylation of JNK and c-Jun, and activation of RhoA were suppressed after FZD7_siRNA transfection into HCT-116 cells. In vitro invasion activity and Wnt target gene expression were also reduced in HCT-116 cells transfected with FZD7_siRNA. Liver metastasis of stable FZD7_siRNA HCT-116 cell transfectants in scid mice was decreased to 40-50% compared to controls. The mRNA levels of FZD7 in 135 primary CRC tissues were examined by real-time PCR. FZD7 mRNA levels were significantly higher in stage II, III or IV tumours than in non-tumour tissues (P<0.005), and overall survival was shorter in those patients with higher FZD7 expression (P<0.001).ConclusionThese data suggest that FZD7 may be involved in enhancement of survival, invasion and metastatic capabilities of colon cancer cells through non-canonical Wnt signalling pathways as well as the canonical pathway

    Successful management of pelvic recurrence of MSI-High endometrial cancer by total pelvic exenteration followed by administration of pembrolizumab:A case report

    Get PDF
    Surgery can be curative treatment for pelvic locoregional recurrence of endometrial cancer; however, a cure is contingent on complete resection. Here, we report the case of a patient in whom recurrent endometrial tumor remained in the pelvis after resection; long-term control was achieved with postoperative administration of pembrolizumab.The patient had recurrent endometrial cancer of stage IA and was treated with chemotherapy and radiation, but tumor persisted in the pelvic cavity. We therefore attempted total pelvic exenteration, but the tumor was adherent to the pelvic wall and complete resection could not be achieved. However, postoperative administration of pembrolizumab controlled the residual tumor for more than two years without regrowth. We believe that since the resected tumor was MSI-High, the residual tumor responded well to pembrolizumab. It is not known whether cytoreductive surgery contributes to a long-term response to pembrolizumab, but at least in our patient, pembrolizumab appeared to be a very effective drug therapy for MSI-High endometrial cancer that was refractory to chemotherapy and radiotherapy

    WNT signaling enhances breast cancer cell motility and blockade of the WNT pathway by sFRP1 suppresses MDA-MB-231 xenograft growth

    Get PDF
    ABSTRACT: INTRODUCTION: In breast cancer deregulation of the WNT signaling pathway occurs by autocrine mechanisms. WNT ligands and Frizzled (FZD) receptors are coexpressed in primary breast tumors and cancer cell lines. Moreover, many breast tumors show hypermethylation of secreted Frizzled-related protein 1 (sFRP1)'s promoter region, causing low expression of this WNT antagonist. We have previously shown that the WNT pathway influences proliferation of breast cancer cell lines via activation of canonical signaling and epidermal growth factor receptor (EGFR) transactivation, and that interference with WNT signaling reduces proliferation. Here we examine the role of WNT signaling in breast tumor cell migration and on xenograft outgrowth. METHODS: The breast cancer cell line MDA-MB-231 was used to study WNT signaling. We examined the effects of activating or blocking the WNT pathway on cell motility by treatment with WNT ligands or by ectopic sFPR1 expression, respectively. The ability of sFRP1 expressing MDA-MB-231 cells to grow as xenografts was also tested. Microarray analyses were carried out to identify targets with roles in MDA-MB-231/sFRP1 tumor growth inhibition. RESULTS: We show that WNT stimulates the migratory ability of MDA-MB-231 cells. Furthermore, ectopic expression of sFRP1 in MDA-MB-231 cells blocks canonical WNT signaling and decreases their migratory potential. Moreover, the ability of MDA-MB-231/sFRP1 expressing cells to grow as xenografts in mammary glands and to form lung metastases is dramatically impaired. Microarray analyses led to the identification of two genes, CCND1 and CDKN1A, whose expression level is selectively altered in vivo in sFRP1 expressing tumors. The encoded proteins, Cyclin D1 and p21Cip1 were down- and up-regulated, respectively, in sFRP1 expressing tumors, suggesting that they are downstream mediators of WNT signaling. CONCLUSIONS: Our results show that the WNT pathway influences multiple biological properties of MDA-MB-231 breast cancer cells. WNT stimulates tumor cell motility; conversely sFRP1 mediated WNT pathway blockade reduces motility. Moreover, ectopic sFRP1 expression in MDA-MB-231 cells has a strong negative impact on tumor outgrowth and blocked lung metastases. These results suggest that interference with WNT signaling using sFRP1 to block the ligand-receptor interaction may be a valid therapeutic approach in breast cancer

    Different Requirement for Wnt/β-Catenin Signaling in Limb Regeneration of Larval and Adult Xenopus

    Get PDF
    BACKGROUND:In limb regeneration of amphibians, the early steps leading to blastema formation are critical for the success of regeneration, and the initiation of regeneration in an adult limb requires the presence of nerves. Xenopus laevis tadpoles can completely regenerate an amputated limb at the early limb bud stage, and the metamorphosed young adult also regenerates a limb by a nerve-dependent process that results in a spike-like structure. Blockage of Wnt/β-catenin signaling inhibits the initiation of tadpole limb regeneration, but it remains unclear whether limb regeneration in young adults also requires Wnt/β-catenin signaling. METHODOLOGY/PRINCIPAL FINDINGS:We expressed heat-shock-inducible (hs) Dkk1, a Wnt antagonist, in transgenic Xenopus to block Wnt/β-catenin signaling during forelimb regeneration in young adults. hsDkk1 did not inhibit limb regeneration in any of the young adult frogs, though it suppressed Wnt-dependent expression of genes (fgf-8 and cyclin D1). When nerve supply to the limbs was partially removed, however, hsDkk1 expression blocked limb regeneration in young adult frogs. Conversely, activation of Wnt/β-catenin signaling by a GSK-3 inhibitor rescued failure of limb-spike regeneration in young adult frogs after total removal of nerve supply. CONCLUSIONS/SIGNIFICANCE:In contrast to its essential role in tadpole limb regeneration, our results suggest that Wnt/β-catenin signaling is not absolutely essential for limb regeneration in young adults. The different requirement for Wnt/β-catenin signaling in tadpoles and young adults appears to be due to the projection of nerve axons into the limb field. Our observations suggest that nerve-derived signals and Wnt/β-catenin signaling have redundant roles in the initiation of limb regeneration. Our results demonstrate for the first time the different mechanisms of limb regeneration initiation in limb buds (tadpoles) and developed limbs (young adults) with reference to nerve-derived signals and Wnt/β-catenin signaling

    Acute esophageal necrosis caused by alcohol abuse

    No full text

    Micromorphological cellular responses of MC3T3-E1 and RAW264.7 after exposure to water-dispersible silver nanoparticles stabilized by metal-carbon σ-bonds

    Get PDF
    With the continuous progress in nanomaterial development for biomedicine, the potential cytotoxicity of nanoparticles is drawing more attention and concern for clinical applications. The purpose of this study was to evaluate biological responses of new water-dispersible silver nanoparticles (Ag-NPs) stabilized by Ag-C σ-bonds in cultured marine macrophages (RAW264.7) and osteoblast-like cells (MC3T3-E1) using cell viability and morphological analyses. For RAW264.7, Ag-NPs seemed to induce cytotoxicity that was dependent on the Ag-NP concentration. However, no cytotoxic effects were observed in the MC3T3-E1 cell line. In microscopic analysis, Ag-NPs were taken up by MC3T3-E1 cells with only minor cell morphological changes, in contrast to RAW264.7 cells, in which particles aggregated in the cytoplasm and vesicles. The ability of endocytosis of macrophages may induce harmful effects due to expansion of cell vesicles compared to osteoblast-like cells with their lower uptake of Ag-NPs

    Frequency spectra of vibration transmissibility for magnetic elastomers with various plasticizer contents

    No full text
    The effect of plasticizer content on the vibration absorbing properties for polyurethane elastomers was investigated. A natural frequency appeared on the frequency spectra at around 100 Hz. The natural frequency linearly decreased, and the transmissibility also decreased with the plasticizer content. Magnetic elastomers containing carbonyl iron particles with a dimeter of 7.0 mm also showed a natural frequency at ~260 Hz, and the natural frequency significantly decreased with the plasticizer content. The decrease in the transmissibility with the plasticizer content was larger than that for polyurethane elastomers. The natural frequency for magnetic elastomers increased by several ten Hz by a magnetic field of 60 mT although the transmissibility was independently of the plasticizer content. The effect of load on the natural frequency for these elastomers was also investigated, and it was found that the natural frequency is proportional to the storage modulus, G, with different two slopes depending on the mass of the system, m. The linear relation between the natural frequency and (G’/m)1/2 revealed that the observed vibration can be basically described by a simple harmonic oscillation
    corecore