7 research outputs found

    Insights into the magnetocaloric effect of Gadolinium: A DFT Exploration of Structural, Electronic, and Magnetic Features in Bulk and Film configurations

    Full text link
    Gadolinium stand as the favored choice among magnetic refrigerant materials for numerous active magnetic regenerator (AMR) prototypes due to its remarkable ability to exhibit a substantial change in magnetic entropy. This unique characteristic arises from its status as one of the elemental ferromagnets with a high Curie temperature, closely aligning with room temperature conditions, and undergoing a second-order magnetic phase transition. In this comprehensive study, we employ density functional theory (DFT) calculations to explore the structural, electronic, and magnetic properties of both Gadolinium bulk and film configurations. Our primary objective is to gain a deeper understanding of the intricate physics underlying the intriguing magnetocaloric features observed in Gadolinium. This investigation provides valuable insights into the potential applications and the broader implications of Gadolinium in the realm of magnetic refrigeration technology

    Engineering the magnetic and magnetocaloric properties of PrVO3 epitaxial oxide thin films by strain effects

    Full text link
    Combining multiple degrees of freedom in strongly-correlated materials such as transition-metal oxides would lead to fascinating magnetic and magnetocaloric features. Herein, the strain effects are used to markedly tailor the magnetic and magnetocaloric properties of PrVO3 thin films. The selection of appropriate thickness and substrate enables us to dramatically decrease the coercive magnetic field from 2.4 T previously observed in sintered PVO3 bulk to 0.05 T for compressive thin films making from the PrVO3 compound a nearly soft magnet. This is associated with a marked enhancement of the magnetic moment and the magnetocaloric effect that reach unusual maximum values of roughly 4.86 uB and 56.8 J/kg K in the magnetic field change of 6 T applied in the sample plane at the cryogenic temperature range (3 K), respectively. This work strongly suggests that taking advantage of different degrees of freedom and the exploitation of multiple instabilities in a nanoscale regime is a promising strategy for unveiling unexpected phases accompanied by a large magnetocaloric effect in oxides.Comment: This paper is accepted for publication in Applied Physics Letter

    Structural, electronic and magnetic properties of LaCr2Si2C: Ab initio calculation, mean field approximation and Monte-Carlo simulation

    No full text
    The magnetic behavior of LaCr2Si2C compound is investigated in this work, using first principle methods, Monte Carlo simulation (MCS) and mean field approximation (MFA). The structural, electronic and magnetic properties are described using ab initio method in the framework of the Generalized Gradient Approximation (GGA), and the Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method implemented in the WIEN2K packages. We have also computed the coupling terms between magnetic atoms which are used in Hamiltonian model. A theoretical study realized by mean field approximation and Monte Carlo Simulation within the Ising model is used to more understand the magnetic properties of this compound. Thereby, our results showed a ferromagnetic ordering of the Cr magnetic moments below the Curie temperature of 30 K (Tc < 30 K) in LaCr2Si2C. Other parameters are also computed as: the magnetization, the energy, the specific heat and the susceptibility. This material shows the small sign of supra-conductivity; and future researches could be focused to enhance the transport and magnetic properties of this system. Keywords: Magnetic properties, Electronic structure, Ab initio, Mean field approximation, Monte Carlo simulation, Superconductivit

    Engineering the magnetocaloric properties of PrVO 3 epitaxial oxide thin films by strain effects

    No full text
    International audienceCombining multiple degrees of freedom in strongly correlated materials such as transition-metal oxides would lead to fascinating magnetic and magnetocaloric features. Herein, the strain effects are used to markedly tailor the magnetic and magnetocaloric properties of PrVO3 thin films. The selection of an appropriate thickness and substrate enables us to dramatically decrease the coercive magnetic field from 2.4 T previously observed in sintered PVO3 bulk to 0.05 T for compressive thin films making from the PrVO3 compound a nearly soft magnet. This is associated with a marked enhancement of the magnetic moment and the magnetocaloric effect that reaches unusual maximum values of roughly 4.86 μB and 56.8 J/kg K with the magnetic field change of 6 T applied in the sample plane in the cryogenic temperature range (3 K), respectively. This work strongly suggests that taking advantage of different degrees of freedom and the exploitation of multiple instabilities in a nanoscale regime is a promising strategy for unveiling unexpected phases accompanied by a large magnetocaloric effect in oxides
    corecore