7 research outputs found

    Identification of Putative Ortholog Gene Blocks Involved in Gestant and Lactating Mammary Gland Development: A Rodent Cross-Species Microarray Transcriptomics Approach

    Get PDF
    The mammary gland (MG) undergoes functional and metabolic changes during the transition from pregnancy to lactation, possibly by regulation of conserved genes. The objective was to elucidate orthologous genes, chromosome clusters and putative conserved transcriptional modules during MG development. We analyzed expression of 22,000 transcripts using murine microarrays and RNA samples of MG from virgin, pregnant, and lactating rats by cross-species hybridization. We identified 521 transcripts differentially expressed; upregulated in early (78%) and midpregnancy (89%) and early lactation (64%), but downregulated in mid-lactation (61%). Putative orthologous genes were identified. We mapped the altered genes to orthologous chromosomal locations in human and mouse. Eighteen sets of conserved genes associated with key cellular functions were revealed and conserved transcription factor binding site search entailed possible coregulation among all eight block sets of genes. This study demonstrates that the use of heterologous array hybridization for screening of orthologous gene expression from rat revealed sets of conserved genes arranged in chromosomal order implicated in signaling pathways and functional ontology. Results demonstrate the utilization power of comparative genomics and prove the feasibility of using rodent microarrays to identification of putative coexpressed orthologous genes involved in the control of human mammary gland development

    Launching the C-HPP neXt-CP50 pilot project for functional characterization of identified proteins with no known function

    No full text
    An important goal of the Human Proteome Organization (HUPO) Chromosome-centric Human Proteome Project (C-HPP) is to correctly define the number of canonical proteins encoded by their cognate open reading frames on each chromosome in the human genome. When identified with high confidence of protein evidence (PE), such proteins are termed PE1 proteins in the online database resource, neXtProt. However, proteins that have not been identified unequivocally at the protein level but that have other evidence suggestive of their existence (PE2-4) are termed missing proteins (MPs). The number of MPs has been reduced from 5511 in 2012 to 2186 in 2018 (neXtProt 2018-01-17 release). Although the annotation of the human proteome has made significant progress, the "parts list" alone does not inform function. Indeed, 1937 proteins representing ∼10% of the human proteome have no function either annotated from experimental characterization or predicted by homology to other proteins. Specifically, these 1937 "dark proteins" of the so-called dark proteome are composed of 1260 functionally uncharacterized but identified PE1 proteins, designated as uPE1, plus 677 MPs from categories PE2-PE4, which also have no known or predicted function and are termed uMPs. At the HUPO-2017 Annual Meeting, the C-HPP officially adopted the uPE1 pilot initiative, with 14 participating international teams later committing to demonstrate the feasibility of the functional characterization of large numbers of dark proteins (CP), starting first with 50 uPE1 proteins, in a stepwise chromosome-centric organizational manner. The second aim of the feasibility phase to characterize protein (CP) functions of 50 uPE1 proteins, termed the neXt-CP50 initiative, is to utilize a variety of approaches and workflows according to individual team expertise, interest, and resources so as to enable the C-HPP to recommend experimentally proven workflows to the proteome community within 3 years. The results from this pilot will not only be the cornerstone of a larger characterization initiative but also enhance understanding of the human proteome and integrated cellular networks for the discovery of new mechanisms of pathology, mechanistically informative biomarkers, and rational drug targets
    corecore