3,927 research outputs found

    Belle II iTOP Optics: Design, Construction and Performance

    Full text link
    The imaging-Time-of-Propogation (iTOP) counter is a new type of ring-imaging Cherenkov counter developed for particle identification at the Belle II experiment. It consists of 16 modules arranged azimuthally around the beam line. Each module consists of one mirror, one prism and two quartz bar radiators. Here we describe the design, acceptance test, alignment, gluing and assembly of the optical components. All iTOP modules have been successfully assembled and installed in the Belle II detector by the middle of 2016. After installation, laser and cosmic ray data have been taken to test the performance of the modules. First results from these tests are presented.Comment: Proceedings of TIPP 2017, May 22 - 26, Beijing, China, 2017; University of Cincinnati preprint UCHEP-17-07. arXiv admin note: text overlap with arXiv:1709.0993

    Search for lepton flavor violation via the intense high-energy muon beam

    Full text link
    A deep inerastic scattering process \mutau is discussed to study lepton flavor violation between muons and tau leptons. In supersymmetric models, the Higgs boson mediated diagrams could be important for this reaction. We find that at a muon energy (EμE_{\mu}) higher than 50 GeV, the predicted cross section significantly increases due to the contribution from sea bb-quarks. The number of produced tau leptons can be O(104)\mathcal{O}(10^4) at EμE_{\mu}= 300 GeV from 102010^{20} muons, whereas O(102)\mathcal{O}(10^2) events are given at Eμ=50E_{\mu}= 50 GeV.Comment: Contribution to the 6th International Workshop on Neutrino Factories & Superbeams(NuFact04), Jul. 26-Aug. 1, 2004, Osaka Univerisity, Osaka, Japan, talk given by S.K., to appear in the Proceedings, 3 pages, 4 figure

    An imaging time-of-propagation system for charged particle identification at a super B factory

    Full text link
    Super B factories that will further probe the flavor sector of the Standard Model and physics beyond will demand excellent charged particle identification (PID), particularly K/pi separation, for momenta up to 4 GeV/c, as well as the ability to operate under beam backgrounds significantly higher than current B factory experiments. We describe an Imaging Time-of-Propagation (iTOP) detector which shows significant potential to meet these requirements. Photons emitted from charged particle interactions in a Cerenkov radiator bar are internally reflected to the end of the bar, where they are collected on a compact image plane using photodetectors with fine spatial segmentation in two dimensions. Precision measurements of photon arrival time are used to enhance the two dimensional imaging, allowing the system to provide excellent PID capabilities within a reduced detector envelope. Results of the ongoing optimization of the geometric and physical properties of such a detector are presented, as well as simulated PID performance. Validation of simulations is being performed using a prototype in a cosmic ray test stand at the University of Hawaii.Comment: 3 pages, 5 figures, submitted to TIPP09 proceeding

    The D0 Run IIb Luminosity Measurement

    Full text link
    An assessment of the recorded integrated luminosity is presented for data collected with the D0 detector at the Fermilab Tevatron Collider from June 2006 to September 2011 (Run IIb). In addition, a measurement of the effective cross section for inelastic interactions, also referred to as the luminosity constant, is reported. This measurement incorporates new features that lead to a substantial improvement in the precision of the result. A luminosity constant of \sigma_{LM} = 48.3\pm1.9\pm0.6 mb is obtained, where the first uncertainty is due to the accuracy of the inelastic cross section used by both CDF and D0, and the second uncertainty is due to D0 sources. The recorded luminosity for the highest E_T jet trigger is L_rec = 9.2 \pm 0.4 fb^{-1}, with a relative uncertainty of 4.3%.Comment: 20 pages, 23 figure

    Semi-classical correlator for 1/4 BPS Wilson loop and chiral primary operator with large R-charge

    Full text link
    We study a holographic description for correlation function of 1/4 BPS Wilson loop operator and 1/2 BPS local operator carrying a large R-charge of order \sqrt \lambda. We construct a rotating string solution which is extended in S5 as well as in AdS5. The string solution preserves the 1/8 of the supersymmetry as expected from the gauge theory computation. By evaluating the string action including boundary terms we show that the string solution reproduces correlation function in large J \sim O(\sqrt \lambda) limit. In addition, we found the second solution for which the "size" of the string becomes larger than the radius of S5. In the case J=0, this solution reduces to the previously known unstable string configuration. The gauge theory side also contains a saddle point which is not on the steepest descent path. We show that the saddle point value matches for this case as well.Comment: 19 pages, 7 figures, confusing point clarified in subsection 3.5, reference added, minor correction

    Cross-talk suppressed multi-anode MCP-PMT

    Full text link
    We have developed a 4-channel multi-anode MCP-PMT, SL10, which exhibits a performance of sigma_TTS ~ 30 ps for single photons with G ~ 10^6 and QE=20% under a magnetic field of B <= 1.5 T. The cross-talk among anodes has been extensively studied. We have taken two measures to suppress it: one is to configure the SL10 to an effectively independent 4 small pieces of MCP-PMT's by segmenting an electrode of the second MCP-layer; the other is to use a constant fractional discriminator. Remarkable improvement has been achieved.Comment: 14 pages, 14 figure

    Structural comparison of the free and DNA-bound forms of the purine repressor DNA-binding domain

    Get PDF
    AbstractBackground: The purine repressor (PurR) regulates genes that encode enzymes for purine biosynthesis. PurR has a two domain structure with an N-terminal DNA-binding domain (DBD) and a C-terminal corepressor-binding domain (CBD). The three-dimensional structure of a ternary complex of PurR bound to both corepressor and a specific DNA sequence has recently been determined by X-ray crystallography.Results We have determined the solution structure of the PurR DBD by NMR. It contains three helices, with the first and second helices forming a helix-turn-helix motif. The tertiary structure of the three helices is very similar to that of the corresponding region in the ternary complex. The structure of the hinge helical region, however, which makes specific base contacts in the minor groove of DNA, is disordered in the DNA-free form.Conclusion The stable formation of PurR hinge helices requires PurR dimerization, which brings the hinge regions proximal to each other. The dimerization of the hinge helices is likely to be controled by the CBD dimerization interface, but is induced by specific-DNA binding

    Spectral Correlation in Incommensurate Multi-Walled Carbon Nanotubes

    Full text link
    We investigate the energy spectra of clean incommensurate double-walled carbon nanotubes, and find that the overall spectral properties are described by the so-called critical statistics of Anderson metal-insulator transition. In the energy spectra, there exist three different regimes characterized by Wigner-Dyson, Poisson, and semi-Poisson distributions. This feature implies that the electron transport in incommensurate multi-walled nanotubes can be either diffusive, ballistic, or intermediate between them, depending on the position of the Fermi energy.Comment: final version to appear in Phys. Rev. Let

    Study of B -> \rho \pi decays at Belle

    Full text link
    This paper describes a study of B meson decays to the pseudoscalar-vector final state \rho\pi using 31.9\times 10^6 B\bar{B} events collected with the Belle detector at KEKB. The branching fractions B(B^+ \to \rho^0\pi^+) = (8.0^{+2.3+0.7}_{-2.0-0.7}) \times 10^{-6} and B(B^0 -> \rho^{+-} \pi^{-+}) = (20.8^{+6.0+2.8}_{-6.3-3.1}) \times 10^{-6} are obtained. In addition, a 90% confidence level upper limit of B(B^0 \to \rho^0\pi^0) < 5.3 \times 10^{-6}is reported.Comment: 14 pages, 3 figures, to be submitted to Phys. Lett.
    • …
    corecore