167 research outputs found

    Thermodynamics of four-dimensional black objects in the warped compactification

    Full text link
    We reinvestigate the thermodynamics of black objects (holes and strings) in four-dimensional braneworld models that are originally constructed by Emparan, Horowitz and Myers based on the anti-de Sitter (AdS) C-metric. After proving the uniqueness of slicing the AdS C-metric, we derive thermodynamic quantities of the black objects by means of the Euclidean formulation and find that we have no necessity of requiring any regularization to calculate their classical action. We show that there exist the Bekenstein-Hawking law and the thermodynamic first law. The thermodynamic mass of the localized black hole on a flat brane is negative, and it differs from the one previously derived. We discuss the thermodynamic stabilities and show that the BTZ black string is more stable than the localized black holes in a canonical ensemble, except for an extreme case. We also find a braneworld analogue of the Hawking-Page transition between the BTZ black string and thermal AdS branes. The localized black holes on a de Sitter brane is discussed by considering Nariai instanton, comparing the study of "black cigar" in the five-dimensional braneworld model.Comment: 15 pages, 4 figures, RevTex4, typos fixed, minor correction

    A black ring with a rotating 2-sphere

    Full text link
    We present a solution of the vacuum Einstein's equations in five dimensions corresponding to a black ring with horizon topology S^1 x S^2 and rotation in the azimuthal direction of the S^2. This solution has a regular horizon up to a conical singularity, which can be placed either inside the ring or at infinity. This singularity arises due to the fact that this black ring is not balanced. In the infinite radius limit we correctly reproduce the Kerr black string, and taking another limit we recover the Myers-Perry black hole with a single angular momentum.Comment: 10 page

    Black Holes Radiate Mainly on the Brane

    Get PDF
    We examine the evaporation of a small black hole on a brane in a world with large extra dimensions. Since the masses of many Kaluza-Klein modes are much smaller than the Hawking temperature of the black hole, it has been claimed that most of the energy is radiated into these modes. We show that this is incorrect. Most of the energy goes into the modes on the brane. This raises the possibility of observing Hawking radiation in future high energy colliders if there are large extra dimensions.Comment: 11 page

    Ultraspinning instability: the missing link

    Full text link
    We study linearized perturbations of Myers-Perry black holes in d=7, with two of the three angular momenta set to be equal, and show that instabilities always appear before extremality. Analogous results are expected for all higher odd d. We determine numerically the stationary perturbations that mark the onset of instability for the modes that preserve the isometries of the background. The onset is continuously connected between the previously studied sectors of solutions with a single angular momentum and solutions with all angular momenta equal. This shows that the near-extremality instabilities are of the same nature as the ultraspinning instability of d>5 singly-spinning solutions, for which the angular momentum is unbounded. Our results raise the question of whether there are any extremal Myers-Perry black holes which are stable in d>5.Comment: 19 pages. 1 figur

    Small Black Holes on Branes: Is the horizon regular or singular ?

    Full text link
    We investigate the following question: Consider a small mass, with ϵ\epsilon (the ratio of the Schwarzschild radius and the bulk curvature length) much smaller than 1, that is confined to the TeV brane in the Randall-Sundrum I scenario. Does it form a black hole with a regular horizon, or a naked singularity? The metric is expanded in ϵ\epsilon and the asymptotic form of the metric is given by the weak field approximation (linear in the mass). In first order of ϵ\epsilon we show that the iteration of the weak field solution, which includes only integer powers of the mass, leads to a solution that has a singular horizon. We find a solution with a regular horizon but its asymptotic expansion in the mass also contains half integer powers.Comment: Accepted for publication in PR

    Black Holes at the LHC

    Get PDF
    If the scale of quantum gravity is near a TeV, the LHC will be producing one black hole (BH) about every second. The BH decays into prompt, hard photons and charged leptons is a clean signature with low background. The absence of significant missing energy allows the reconstruction of the mass of the decaying BH. The correlation between the BH mass and its temperature, deduced from the energy spectrum of the decay products, can test experimentally the higher dimensional Hawking evaporation law. It can also determine the number of large new dimensions and the scale of quantum gravity.Comment: 5 pages, 3 figures, submitted to PRL. Results presented at the Les Houches Workshop "Physics at the TeV Colliders" (May 30, 2001) and the "Avatars of M-Theory" conference, ITP at Santa Barbara (June 7, 2001), http://online.itp.ucsb.edu/online/mtheory_c01/dimopoulo

    A rotating black ring in five dimensions

    Get PDF
    The vacuum Einstein equations in five dimensions are shown to admit a solution describing an asymptotically flat spacetime regular on and outside an event horizon of topology S^1 x S^2. It describes a rotating ``black ring''. This is the first example of an asymptotically flat vacuum solution with an event horizon of non-spherical topology. There is a range of values for the mass and angular momentum for which there exist two black ring solutions as well as a black hole solution. Therefore the uniqueness theorems valid in four dimensions do not have simple higher dimensional generalizations. It is suggested that increasing the spin of a five dimensional black hole beyond a critical value results in a transition to a black ring, which can have an arbitrarily large angular momentum for a given mass.Comment: 4 pages, 3 figures; v2: minor improvement

    Ultraspinning instability of anti-de Sitter black holes

    Get PDF
    Myers-Perry black holes with a single spin in d>5 have been shown to be unstable if rotating sufficiently rapidly. We extend the numerical analysis which allowed for that result to the asymptotically AdS case. We determine numerically the stationary perturbations that mark the onset of the instabilities for the modes that preserve the rotational symmetries of the background. The parameter space of solutions is thoroughly analysed, and the onset of the instabilities is obtained as a function of the cosmological constant. Each of these perturbations has been conjectured to represent a bifurcation point to a new phase of stationary AdS black holes, and this is consistent with our results.Comment: 22 pages, 7 figures. v2: Reference added. Matches published versio

    The polarization of F1 strings into D2 branes: "Aut Caesar aut nihil"

    Full text link
    We give matrix and supergravity descriptions of type IIA F-strings polarizing into cylindrical D2 branes. When a RR four-form field strength F_4 is turned on in a supersymmetric fashion (with 4 supercharges), a complete analysis of the solutions reveals the existence of a moduli space of F1 -> D2 polarizations (Caesar) for some fractional strengths of the perturbation, and of no polarization whatsoever (nihil) for all other strengths of the perturbation. This is a very intriguing phenomenon, whose physical implications we can only speculate about. In the matrix description of the polarization we use the Non-Abelian Born-Infeld action in an extreme regime, where the commutators of the fields are much larger than 1. The validity of the results we obtain, provides a direct confirmation of this action, although is does not confirm or disprove the symmetrized trace prescription.Comment: 14 page
    • …
    corecore