14 research outputs found

    Tachyons, Supertubes and Brane/Anti-Brane Systems

    Get PDF
    We find supertubes with arbitrary (and not necessarily planar) cross section; the stability against the D2-brane tension is due to a compensation by the local momentum generated by Born-Infeld fields. Stability against long-range supergravity forces is also established. We find the corresponding solutions of the infinite-N M(atrix) model. The supersymmetric D2/anti-D2 system is a special case of the general supertube, and we show that there are no open-string tachyons in this system via a computation of the open-string one-loop vacuum energy.Comment: 1+23 pages, 2 figures, LaTeX. V2, 1+28 pages: Further generalization to non-planar cross-sections and addition of an entirely new section with the explicit supergravity solutions. V3, 1+30 pages: Bound on the angular momentum added, other minor changes in Section

    Thermodynamics of a Kerr Newman de Sitter Black Hole

    Get PDF
    We compute the conserved quantities of the four-dimensional Kerr-Newman-dS (KNdS) black hole through the use of the counterterm renormalization method, and obtain a generalized Smarr formula for the mass as a function of the entropy, the angular momentum and the electric charge. The first law of thermodynamics associated to the cosmological horizon of KNdS is also investigated. Using the minimal number of intrinsic boundary counterterms, we consider the quasilocal thermodynamics of asymptotic de Sitter Reissner-Nordstrom black hole, and find that the temperature is equal to the product of the surface gravity (divided by 2Ď€2\pi) and the Tolman redshift factor. We also perform a quasilocal stability analysis by computing the determinant of Hessian matrix of the energy with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles and obtain a complete set of phase diagrams. We then turn to the quasilocal thermodynamics of four-dimensional Kerr-Newman-de Sitter black hole for virtually all possible values of the mass, the rotation and the charge parameters that leave the quasilocal boundary inside the cosmological event horizon, and perform a quasilocal stability analysis of KNdS black hole.Comment: REVTEX4, 12 pages, 12 figures, references added and some points in Sec II have been clarified, version to appear in Can. J. Phy

    Thermodynamic and gravitational instability on hyperbolic spaces

    Get PDF
    We study the properties of anti--de Sitter black holes with a Gauss-Bonnet term for various horizon topologies (k=0, \pm 1) and for various dimensions, with emphasis on the less well understood k=-1 solution. We find that the zero temperature (and zero energy density) extremal states are the local minima of the energy for AdS black holes with hyperbolic event horizons. The hyperbolic AdS black hole may be stable thermodynamically if the background is defined by an extremal solution and the extremal entropy is non-negative. We also investigate the gravitational stability of AdS spacetimes of dimensions D>4 against linear perturbations and find that the extremal states are still the local minima of the energy. For a spherically symmetric AdS black hole solution, the gravitational potential is positive and bounded, with or without the Gauss-Bonnet type corrections, while, when k=-1, a small Gauss-Bonnet coupling, namely, \alpha << {l}^2 (where l is the curvature radius of AdS space), is found useful to keep the potential bounded from below, as required for stability of the extremal background.Comment: Shortened to match published (PRD) version, 18 pages, several eps figure

    Near the horizon of 5D black rings

    Full text link
    For the five dimensional N=2 black rings, we study the supersymmetry enhancement and identify the global supergroup of the near horizon geometry. We show that the global part of the supergroup is OSp(4*|2)X U(1) which is similar to the small black string. We show that results obtained by applying the entropy function formalism, the c-extremization approach and the Brown-Henneaux method to the black ring solution are in agreement with the microscopic entropy calculation.Comment: 26 pages, version to appear in JHEP, the near horizon superalgebra is corrected, discussion on small black ring is discarded, Brown-Henneaux approach to large black ring is adde

    Quest for Localized 4-D Black Holes in Brane Worlds

    Get PDF
    We investigate the possibility of obtaining localized black hole solutions in brane worlds by introducing a dependence of the four-dimensional line--element on the extra dimension. An analysis, performed for the cases of an empty bulk and of a bulk containing either a scalar or a gauge field, reveals that no conventional type of matter can support such a dependence. Considering a particular ansatz for the five-dimensional line--element that corresponds to a black hole solution with a ``decaying'' horizon, we determine the bulk energy--momentum tensor capable of sustaining such a behaviour. It turns out that an exotic, shell-like distribution of matter is required. For such solutions, the black hole singularity is indeed localized near the brane and the spacetime is well defined near the AdS horizon, in contrast to the behaviour found in black string type solutions.Comment: 17 pages, RevTex, 3 figures, version to appear in Physical Review D, comments and references added, typos correcte

    Killing spectroscopy of closed timelike curves

    Full text link
    We analyse the existence of closed timelike curves in spacetimes which possess an isometry. In particular we check which discrete quotients of such spaces lead to closed timelike curves. As a by-product of our analysis, we prove that the notion of existence or non-existence of closed timelike curves is a T-duality invariant notion, whenever the direction along which we apply such transformations is everywhere spacelike. Our formalism is straightforwardly applied to supersymmetric theories. We provide some new examples in the context of D-branes and generalized pp-waves.Comment: 1+35 pages, no figures; v2, new references added. Final version to appear in JHE

    Pre - Inflationary Clues from String Theory ?

    Full text link
    "Brane supersymmetry breaking" occurs in String Theory when the only available combinations of D-branes and orientifolds are not mutually BPS and yet do not introduce tree-level tachyon instabilities. It is characterized by the emergence of a steep exponential potential, and thus by the absence of maximally symmetric vacua. The corresponding low-energy supergravity admits intriguing spatially-flat cosmological solutions where a scalar field is forced to climb up toward the steep potential after an initial singularity, and additional milder terms can inject an inflationary phase during the ensuing descent. We show that, in the resulting power spectra of scalar perturbations, an infrared suppression is typically followed by a pre-inflationary peak that reflects the end of the climbing phase and can lie well apart from the approximately scale invariant profile. A first look at WMAP9 raw data shows that, while the chi^2 fits for the low-l CMB angular power spectrum are clearly compatible with an almost scale invariant behavior, they display nonetheless an eye-catching preference for this type of setting within a perturbative string regime.Comment: 34 pages, LaTeX, 16 eps figures. Relative displacement in fig. 14 and some typos corrected, references and acknowledgments updated. To appear in JCA

    From D-Dbar Pairs to Branes in Motion

    Full text link
    We investigate various supersymmetric brane intersections. Motivated by the recent results on supertubes, we investigate general constraints in which parallel brane-antibrane configurations are supersymmetric. Dual descriptions of these configurations involve systems of branes in relative motion. In particular, we find new supersymmetric configurations which are not related to a static brane intersection by a boost. In these new configurations, the intersection point moves at the speed of light. These systems provide interesting time dependent backgrounds for open strings.Comment: 28+1 pages, 8 figures, uses JHEP3.cl

    M-theory lift of brane-antibrane systems and localised closed string tachyons

    Get PDF
    We discuss the lift of certain D6-antiD6-brane systems to M-theory. These are purely gravitational configurations with a bolt singularity. When reduced along a trivial circle, and for large bolt radius, the bolt is related to a non-supersymmetric orbifold type of singularity where some closed string tachyons are expected in the twisted sectors. This is a kind of open-closed string duality that relates open string tachyons on one side and localised tachyons in the other. We consider the evolution of the system of branes from M-theory point of view. This evolution gives rise to a brane-antibrane annihilation on the brane side. On the gravity side, the evolution is related to a reduction of the order of the orbifold and to a contraction of the bolt to a nut or flat space if the system has non-vanishing or vanishing charge, respectively. We also consider the inverse process of reducing a non-supersymmetric orbifold to a D6-brane system. For C2/ZNĂ—ZMC^2/Z_N\times Z_M, the reduced system is a fractional D6-brane at an orbifold singularity C/ZMC/Z_M.Comment: 1+22 pages, 5 figures; v2 comments on the M-theory geometry and further references adde
    corecore