5 research outputs found

    Bone marrow-derived mesenchymal stem cells attenuate pulmonary inflammation and lung damage caused by highly pathogenic avian influenza A/H5N1 virus in BALB/c mice

    Get PDF
    Background The highly pathogenic avian influenza A/H5N1 virus is one of the causative agents of acute lung injury (ALI) with high mortality rate. Studies on therapeutic administration of bone marrow-derived mesenchymal stem cells (MSCs) in ALI caused by the viral infection have been limited in number and have shown conflicting results. The aim of the present investigation is to evaluate the therapeutic potential of MSC administration in A/H5N1-caused ALI, using a mouse model. Methods MSCs were prepared from the bone marrow of 9 to 12 week-old BALB/c mice. An H5N1 virus of A/turkey/East Java/Av154/2013 was intranasally inoculated into BALB/c mice. On days 2, 4, and 6 after virus inoculation, MSCs were intravenously administered into the mice. To evaluate effects of the treatment, we examined for lung alveolar protein as an indicator for lung injury, PaO2/FiO2 ratio for lung functioning, and lung histopathology. Expressions of NF-κB, RAGE (transmembrane receptor for damage associated molecular patterns), TNFα, IL-1β, Sftpc (alveolar cell type II marker), and Aqp5+ (alveolar cell type I marker) were examined by immunohistochemistry. In addition, body weight, virus growth in lung and brain, and duration of survival were measured. Results The administration of MSCs lowered the level of lung damage in the virus-infected mice, as shown by measuring lung alveolar protein, PaO2/FiO2 ratio, and histopathological score. In the MSC-treated group, the expressions of NF-κB, RAGE, TNFα, and IL-1β were significantly suppressed in comparison with a mock-treated group, while those of Sftpc and Aqp5+ were enhanced. Body weight, virus growth, and survival period were not significantly different between the groups. Conclusion The administration of MSCs prevented further lung injury and inflammation, and enhanced alveolar cell type II and I regeneration, while it did not significantly affect viral proliferation and mouse morbidity and mortality. The results suggested that MSC administration was a promissing strategy for treatment of acute lung injuries caused by the highly pathogenic avian influenza A/H5N1 virus, although further optimization and combination use of anti-viral drugs will be obviously required to achieve the goal of reducing mortality

    Whole-Genome Sequence of an Avian Influenza A/H9N2 Virus Isolated from an Apparently Healthy Chicken at a Live-Poultry Market in Indonesia

    Get PDF
    We isolated an avian influenza A/H9N2 virus from an apparently healthy chicken at a live-poultry market in January 2018. This is the first report of a whole-genome sequence of A/H9N2 virus in Indonesia. Phylogenetic analyses indicated that intrasubtype reassortment of genome segments is involved in the genesis of the A/H9N2 virus

    Seroevidence for a High Prevalence of Subclinical Infection With Avian Influenza A(H5N1) Virus Among Workers in a Live-Poultry Market in Indonesia

    No full text
    Background. In Indonesia, highly pathogenic avian influenza A(H5N1) virus has become endemic in poultry and has caused sporadic deadly infections in human. Since 2012, we have conducted fixed-point surveillance of avian influenza viruses at a live-poultry market in East Java, Indonesia. In this study, we examined the seroprevalence of avian influenza A(H5N1) virus infection among market workers. Methods. Sera were collected from 101 workers in early 2014 and examined for antibody activity against avian A(H5N1) Eurasian lineage virus by a hemagglutination-inhibition (HI) assay. Results. By the HI assay, 84% of the sera tested positive for antibody activity against the avian virus. Further analysis revealed that the average HI titer in 2014 was 2.9-fold higher than in 2012 and that seroconversion occurred in 44% of paired sera (11 of 25) between 2012 and 2014. A medical history survey was performed in 2016; responses to questionnaires indicated that none of workers had had severe acute respiratory illness during 2013. Conclusions. This study provides evidence of a high prevalence of avian A(H5N1) virus infection in 2013 among workers at a live-poultry market. However, because no instances of hospitalizations were reported, we can conclude the virus did not manifest any clinical symptoms in workers

    Comparison of Virulence and Lethality in Mice for Avian Influenza Viruses of Two A/H5N1 and One A/H3N6 Isolated from Poultry during Year 2013-2014 in Indonesia

    Get PDF
    In Indonesia, the highly pathogenic avian influenza A/H5N1 virus has become endemic and has been linked with direct transmission to humans. From 2013 to 2014, we isolated avian influenza A/H5N1 and A/H3N6 viruses from poultry in Indonesia. This study aimed to reveal their pathogenicity in mammals using a mouse model. Three of the isolates, Av154 of A/H5N1 clade 2.3.2.1c, Av240 of A/H5N1 clade 2.1.3.2b, and Av39 of A/H3N6, were inoculated into BALB/c mice. To assess morbidity and mortality, we measured body weight daily and monitored survival for 20 d. Av154- and Av240-infected mice lost 25% of their starting body weight by day 7, while Av39-infected mice did not. Most of the Av154-infected mice died on day 8, while the majority of the Av240-infected mice survived until day 20. A 50% mouse lethal dose was calculated to be 2.0 × 101 50% egg infectious doses for Av154, 1.1 × 105 for Av240 and > 3.2 × 106 for Av39. The Av154 virus was highly virulent and lethal in mice without prior adaptation, suggesting its high pathogenic potential in mammals. The Av240 virus was highly virulent but modestly lethal, whereas the Av39 virus was neither virulent nor lethal. Several mammalian adaptive markers of amino acid residues were associated with the highly virulent and lethal phenotypes of the Av154 virus
    corecore