9 research outputs found

    Regulation of FOXO transcription factors by gonadotropin-releasing hormone

    Get PDF
    G protein-coupled receptors (GPCRs) are a large family of trans-membrane receptors that transmit signals from extracellular stimuli to target intracellular signal transduction pathways. The gonadotropin-releasing hormone receptor (GnRH-R) is a GPCR which binds the decapeptide GnRH. In the pituitary gonadotrope, GnRH stimulates gonadotropin (LH and FSH) biosynthesis and secretion to regulate reproduction. GnRH and the GnRH-Rs are also present in many extra-pituitary tissues, although their role at these sites remains largely undetermined. GnRH-Rs are known to recruit a diverse array of signalling pathway mediators in different cell-types. These include; Gq/11-PLCÎČ-IP3/DAG-Ca2+/PKC signalling, monomeric G-proteins and integrins to mediate cell adhesion and migration, the activation of the major members of the mitogen-activated protein kinase (MAPK) super-family (extracellular signal-regulated kinase (ERK), c-Jun N-terminal Kinase (JNK) and p38MAPK), and ÎČ-catenin and other mediators of the canonical Wnt signalling pathway. This thesis describes the regulation of Forkhead Box O (FOXO) transcription factors by GnRH. The mammalian FOXO transcription factors, FOXO1, FOXO3a and FOXO4, are emerging as an important family of proteins that modulate the expression of genes involved in cell-cycle regulation, induction of apoptosis, DNA damage repair and response to oxidative stress. In this thesis, emphasis is placed on delineating the novel role of FOXO transcription factors in mediating two important and widely-researched areas of GnRH biology. Firstly, the role of FOXO transcription factors in mediating cell-growth inhibition in response to GnRH treatment is assessed in a heterologous HEK293/GnRH-R expressing cell line. Secondly, the role of transcription factors in regulating luteinising hormone-ÎČ (LHÎČ)-subunit expression is investigated in the LÎČT2 gonadotrope cell line. Activation of the GnRH-R can inhibit cell proliferation and induce apoptosis in certain tumour-derived cell lines. Several studies have reported that these events can occur as a result of changes in the expression profiles of specific cell-cycle regulatory and apoptotic genes, many of which are FOXO-target genes, including GADD45, FasL, p21Cip1 and p27Kip1. In this thesis, a role for FOXOs in targeting the expression of several of these genes in response to GnRH is assessed, highlighting a specific role for FOXO3a in mediating GADD45 and FasL expression. The signalling mechanisms through which FOXO3a regulates GADD45 expression in response to GnRH is also described. Finally, a stable FOXO3a-knock-down cell line was generated in order to further examine FOXO3a involvement in GnRH-induced cell-growth inhibition. GnRH is an essential regulator of the reproductive process by stimulating the synthesis of LH and FSH in pituitary gonadotropes, thereby regulating gametogenesis and steroidogenesis. Diverse signalling pathways have been reported to regulate LHÎČ-subunit expression in response to GnRH, including the ERK/JNK/p38MAPK cascades and factors such as Egr1, SF1 and ÎČ-catenin. In the second part of this thesis, the role of FOXOs in regulating LHÎČ-subunit expression in response to GnRH is described. The data presented suggests that GnRH can regulate LHÎČ-subunit expression through both indirect and direct FOXO3a-mediated mechanisms. Firstly, FOXO3a was found to regulate Egr1 expression to indirectly target LHÎČ-promoter activity. Secondly, a role for ÎČ-catenin as a FOXO3a co-factor to directly regulate LHÎČ-subunit expression, together with Egr1 and SF1, is also proposed. FOXO3a expression and sub-cellular localisation was assessed and demonstrated in LÎČT2 cells and in adult human male pituitary sections. The research presented in this thesis adds to the diversity of signalling pathways and mediators that GnRH can target in different cellular backgrounds in order to mediate a variety of cellular processes. The antiproliferative and apoptotic effects of GnRH on tumour-derived cell lines are well-documented, and this research highlights a novel role for FOXO3a in mediating these events. The regulation of gonadotropin synthesis remains an important topic of research, and the novel implication of FOXO3a in mediating LHÎČ-subunit expression adds further complexity to gonadotrope physiology

    Non-Viral Episomal Vector Mediates Efficient Gene Transfer of the ÎČ-Globin Gene into K562 and Human Haematopoietic Progenitor Cells

    No full text
    ÎČ-Thalassemia is a subgroup of inherited blood disorders associated with mild to severe anemia with few and limited conventional therapy options. Lately, lentiviral vector-based gene therapy has been successfully applied for disease treatment. However, the current development of non-viral episomal vectors (EV), non-integrating and non-coding for viral proteins, may be helpful in generating valid alternatives to viral vectors. We constructed a non-viral, episomal vector pEPÎČ-globin for the physiological ÎČ-globin gene based on two human chromosomal elements: the scaffold or matrix attachment region (S/MAR), allowing for long nuclear retention and non-integration and the ÎČ-globin replication initiation region (IR), allowing for enhancement of replication and establishment. After nucleofections into K562 cells with a transfection efficiency of 24.62 ± 7.7%, the vector induces stable transfection and is detected in long-term cultures as a non-integrating, circular episome expressing the ÎČ-globin gene efficiently. Transfections into CD34+ cells demonstrate an average efficiency of 15.57 ± 11.64%. In the colony-forming cell assay, fluorescent colonies are 92.21%, which is comparable to those transfected with vector pEP-IR at 92.68%. Additionally, fluorescent colonies produce ÎČ-globin mRNA at a physiologically 3-fold higher level than the corresponding non-transfected cells. Vector pEPÎČ-globin provides the basis for the development of therapeutic EV for gene therapy of ÎČ-thalassemias

    Functional characterisation of long intergenic non-coding RNAs through genetic interaction profiling in Saccharomyces cerevisiae

    No full text
    Abstract Background Transcriptome studies have revealed that many eukaryotic genomes are pervasively transcribed producing numerous long non-coding RNAs (lncRNAs). However, only a few lncRNAs have been ascribed a cellular role thus far, with most regulating the expression of adjacent genes. Even less lncRNAs have been annotated as essential hence implying that the majority may be functionally redundant. Therefore, the function of lncRNAs could be illuminated through systematic analysis of their synthetic genetic interactions (GIs). Results Here, we employ synthetic genetic array (SGA) in Saccharomyces cerevisiae to identify GIs between long intergenic non-coding RNAs (lincRNAs) and protein-coding genes. We first validate this approach by demonstrating that the telomerase RNA TLC1 displays a GI network that corresponds to its well-described function in telomere length maintenance. We subsequently performed SGA screens on a set of uncharacterised lincRNAs and uncover their connection to diverse cellular processes. One of these lincRNAs, SUT457, exhibits a GI profile associating it to telomere organisation and we consistently demonstrate that SUT457 is required for telomeric overhang homeostasis through an Exo1-dependent pathway. Furthermore, the GI profile of SUT457 is distinct from that of its neighbouring genes suggesting a function independent to its genomic location. Accordingly, we show that ectopic expression of this lincRNA suppresses telomeric overhang accumulation in sut457Δ cells assigning a trans-acting role for SUT457 in telomere biology. Conclusions Overall, our work proposes that systematic application of this genetic approach could determine the functional significance of individual lncRNAs in yeast and other complex organisms

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    No full text
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore