9 research outputs found

    Innovative Education and Training in high power laser plasmas (PowerLaPs) for plasma physics, high power laser-matter interactions and high energy density physics - Theory and experiments

    Get PDF
    The Erasmus Plus programme 'Innovative Education and Training in high power laser plasmas', otherwise known as PowerLaPs, is described. The PowerLaPs programme employs an innovative paradigm in that it is a multi-centre programme where teaching takes place in five separate institutes with a range of different aims and styles of delivery. The 'in class' time is limited to four weeks a year, and the programme spans two years. PowerLaPs aims to train students from across Europe in theoretical, applied and laboratory skills relevant to the pursuit of research in laser-plasma interaction physics and inertial confinement fusion (ICF). Lectures are intermingled with laboratory sessions and continuous assessment activities. The programme, which is led by workers from the Technological Educational Institute (TEI) of Crete, and supported by co-workers from the Queen's University Belfast, the University of Bordeaux, the Czech Technical University in Prague, Ecole Polytechnique, the University of Ioannina, the University of Salamanca and the University of York, has just completed its first year. Thus far three Learning Teaching Training (LTT) activities have been held, at the Queen's University Belfast, the University of Bordeaux and the Centre for Plasma Physics and Lasers (CPPL) of TEI Crete. The last of these was a two-week long Intensive Programme (IP), while the activities at the other two universities were each five days in length. Thus far work has concentrated upon training in both theoretical and experimental work in plasma physics, high power laser-matter interactions and high energy density physics. The nature of the programme will be described in detail and some metrics relating to the activities carried out to date will be presented

    Spectral and Divergence Characteristics of Plateau High-Order Harmonics Generated by Femtosecond Chirped Laser Pulses in a Semi-Infinite Gas Cell

    No full text
    The generation of high-order harmonics in a semi-infinite cell by femtosecond laser pulses is a common practice for reliable coherent and low divergence XUV source beams for applications. Despite the relative simplicity of the experimental method, several phenomena coexist that affect the generated spectral and divergence characteristics of the high harmonic XUV frequency comb. The ionisation degree of the medium and the consequent plasma formation length imposes a spatiotemporal evolution of the fundamental EM field and XUV absorption. Varying the laser pulse chirp and the focusing conditions, as well as the gas density, we measured intense harmonic spectral and divergence variations attributed mainly to self-phase modulations of the laser EM field in the partially ionised medium. Additionally, low-divergence high harmonics are observed for certain laser chirp values attributed to the strong phase matching of only the short electron quantum path. Thus, a tunable, low divergent, and coherent XUV source can be realised for spatiotemporal imaging applications in the nanoscale

    Spectral and Divergence Characteristics of Plateau High-Order Harmonics Generated by Femtosecond Chirped Laser Pulses in a Semi-Infinite Gas Cell

    No full text
    The generation of high-order harmonics in a semi-infinite cell by femtosecond laser pulses is a common practice for reliable coherent and low divergence XUV source beams for applications. Despite the relative simplicity of the experimental method, several phenomena coexist that affect the generated spectral and divergence characteristics of the high harmonic XUV frequency comb. The ionisation degree of the medium and the consequent plasma formation length imposes a spatiotemporal evolution of the fundamental EM field and XUV absorption. Varying the laser pulse chirp and the focusing conditions, as well as the gas density, we measured intense harmonic spectral and divergence variations attributed mainly to self-phase modulations of the laser EM field in the partially ionised medium. Additionally, low-divergence high harmonics are observed for certain laser chirp values attributed to the strong phase matching of only the short electron quantum path. Thus, a tunable, low divergent, and coherent XUV source can be realised for spatiotemporal imaging applications in the nanoscale

    Mixed-State Ionic Beams: An Effective Tool for Collision Dynamics Investigations

    No full text
    The use of mixed-state ionic beams in collision dynamics investigations is examined. Using high resolution Auger projectile spectroscopy involving He-like ( 1 s 2 1 S , 1 s 2 s 3 , 1 S ) mixed-state beams, the spectrum contributions of the 1 s 2 s 3 S metastable beam component is effectively separated and clearly identified. This is performed with a technique that exploits two independent spectrum measurements under the same collision conditions, but with ions having quite different metastable fractions, judiciously selected by varying the ion beam charge-stripping conditions. Details of the technique are presented together with characteristic examples. In collisions of 4 MeV B 3 + with H 2 targets, the Auger electron spectrum of the separated 1 s 2 s 3 S boron beam component allows for a detailed analysis of the formation of the 1 s 2 s ( 3 S ) n l 2 L states by direct n l transfer. In addition, the production of hollow 2 s 2 p 1 , 3 P doubly- and 2 s 2 p 2 2 D triply-excited states, by direct excitation and transfer-excitation processes, respectively, can also be independently studied. In similar mixed-state beam collisions of 15 MeV C 4 + with H 2 , He, Ne and Ar targets, the contributions of the 1 s 2 , 1 s 2 s 3 , 1 S beam components to the formation of the 2 s 2 p 3 , 1 P states by double-excitation, 1 s → 2 p excitation and transfer-loss processes can be clearly identified, facilitating comparisons with theoretical calculations

    Radiative Cascade Repopulation of 1s2s2p 4P States Formed by Single Electron Capture in 2–18 MeV Collisions of C4+ (1s2s 3S) with He

    No full text
    This study focuses on the details of cascade repopulation of doubly excited triply open-shell C3+(1s2s2p)4P and 2P± states produced in 2–18 MeV collisions of C4+(1s2s3S) with He. Such cascade calculations are necessary for the correct determination of the ratio R of their cross sections, used as a measure of spin statistics [Madesis et al. PRL 124 (2020) 113401]. Here, we present the details of our cascade calculations within a new matrix formulation based on the well-known diagrammatic cascade approach [Curtis, Am. J. Phys. 36 (1968) 1123], extended to also include Auger depopulation. The initial populations of the 1s2snℓ4L and 1s2snℓ2L levels included in our analysis are obtained from the direct nℓ single electron capture (SEC) cross sections, calculated using the novel three-electron close-coupling (3eAOCC) approach. All relevant radiative branching ratios (RBR) for n≤4 were computed using the COWAN code. While doublet RBRs are found to be very small, quartet RBRs are found to be large, indicating cascade feeding to be important only for quartets, consistent with previous findings. Calculations including up to third order cascades, extended to n→∞ using an n−3 SEC model, showed a ∼60% increase of the 1s2s2p4P populations due to cascades, resulting, for the first time, in R values in good overall agreement with experiment

    Hydrodynamic computational modelling and simulations of collisional shock waves in gas jet targets

    No full text
    We study the optimization of collisionless shock acceleration of ions based on hydrodynamic modelling and simulations of collisional shock waves in gaseous targets. The models correspond to the specifications required for experiments with the laser at the Accelerator Test Facility at Brookhaven National Laboratory and the Vulcan Petawatt system at Rutherford Appleton Laboratory. In both cases, a laser prepulse is simulated to interact with hydrogen gas jet targets. It is demonstrated that by controlling the pulse energy, the deposition position and the backing pressure, a blast wave suitable for generating nearly monoenergetic ion beams can be formed. Depending on the energy absorbed and the deposition position, an optimal temporal window can be determined for the acceleration considering both the necessary overdense state of plasma and the required short scale lengths for monoenergetic ion beam production

    Coherent XUV Multispectral Diffraction Imaging in the Microscale

    No full text
    The rapid growth of nanotechnology has increased the need for fast nanoscale imaging. X-ray free electron laser (XFEL) facilities currently provide such coherent sources of directional and high-brilliance X-ray radiation. These facilities require large financial investments for development, maintenance, and manpower, and thus, only a few exist worldwide. In this article, we present an automated table-top system for XUV coherent diffraction imaging supporting the capabilities for multispectral microscopy at high repetition rates, based on laser high harmonic generation from gases. This prototype system aims towards the development of an industrial table-top system of ultrafast soft X-ray multi-spectral microscopy imaging for nanostructured materials with enormous potential and a broad range of applications in current nanotechnologies. The coherent XUV radiation is generated in a semi-infinite gas cell via the high harmonic generation of the near-infrared femtosecond laser pulses. The XUV spectral selection is performed by specially designed multilayer XUV mirrors that do not affect the XUV phase front and pulse duration

    Coherent XUV Multispectral Diffraction Imaging in the Microscale

    No full text
    The rapid growth of nanotechnology has increased the need for fast nanoscale imaging. X-ray free electron laser (XFEL) facilities currently provide such coherent sources of directional and high-brilliance X-ray radiation. These facilities require large financial investments for development, maintenance, and manpower, and thus, only a few exist worldwide. In this article, we present an automated table-top system for XUV coherent diffraction imaging supporting the capabilities for multispectral microscopy at high repetition rates, based on laser high harmonic generation from gases. This prototype system aims towards the development of an industrial table-top system of ultrafast soft X-ray multi-spectral microscopy imaging for nanostructured materials with enormous potential and a broad range of applications in current nanotechnologies. The coherent XUV radiation is generated in a semi-infinite gas cell via the high harmonic generation of the near-infrared femtosecond laser pulses. The XUV spectral selection is performed by specially designed multilayer XUV mirrors that do not affect the XUV phase front and pulse duration
    corecore