20 research outputs found

    Halogenated organic compounds in archived whale oil : a pre-industrial record

    Get PDF
    Author Posting. © The Authors, 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Environmental Pollution 145 (2007): 668-671, doi:10.1016/j.envpol.2006.08.022.To provide additional evidence that several halogenated organic compounds (HOCs) found in environmental samples are natural and not industrially produced, we analyzed an archived whale oil sample collected in 1921 from the last voyage of the whaling ship Charles W. Morgan. This sample, which predates large-scale industrial manufacture of HOCs, contained two methoxylated polybrominated diphenyl ethers (MeO-PBDEs), five halogenated methyl bipyrroles (MBPs), one halogenated dimethyl bipyrrole (DMBP), and one dimethoxylated polybrominated biphenyl (diMeO-PBB). This result indicates, at least in part, a natural source of the latter compounds. Capsule Nine halogenated organic compounds have been detected in archived whale oil from the 1920s.This work was supported by the National Science Foundation (OCE-0221181 and OCE-0550486), the Woods Hole Oceanographic Institution (WHOI) Ocean Life Institute and the Postdoctoral Scholar Program at WHOI (with funding from The Camille and Henry Dreyfus Foundation, Inc. and The J. Seward Johnson Fund)

    Identification of highly brominated analogues of Q1 in marine mammals

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Environmental Pollution 144 (2006): 336-344, doi:10.1016/j.envpol.2005.10.052.Three novel halogenated organic compounds (HOCs) have been identified in the blubber of marine mammals from coastal New England with the molecular formulae C9H3N2Br6Cl, C9H3N2Br7, and C9H4N2Br5Cl. They were identified using high and low resolution electron ionization (EI) and electron capture negative ionization (ECNI) gas chromatography mass spectrometry (GCMS) and appear to be highly brominated analogues of Q1, a heptachlorinated HOC that has been suspected to be naturally-produced. These new compounds were found in Atlantic white sided dolphin (Lagenorhynchus acutus), bottlenose dolphin (Tursiops truncatus), common dolphin (Delphinus delphis), Risso’s dolphin (Grampus griseus), harbor porpoise (Phocoena phocoena), beluga whale (Delphinapterus leucas), fin whale (Balaenoptera physalus), grey seal (Halichoerus grypus), harp seal (Phoca groenlandica) and a potential food source (Loligo pealei) with concentrations as high as 2.7 μg/g (lipid weight). The regiospecificity of C9H3N2Br6Cl is suggestive of a biogenic origin. Debromination of C9H3N2Br6Cl may be significant in the formation of C9H4N2Br5Cl.This work was supported by the National Science Foundation (OCE-0221181), the Woods Hole Oceanographic Institution (WHOI) Ocean Life Institute, the Postdoctoral Scholar Program at WHOI (with funding from The Camille and Henry Dreyfus Foundation, Inc. and The J. Seward Johnson Fund) (ELT) and The Island Foundation, Inc (BEP)

    Natural 14C in Saccoglossus bromophenolosus compared to 14C in surrounding sediments

    Get PDF
    Author Posting. © Inter-Research, 2006. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 324 (2006): 167-172, doi:10.3354/meps324167.The natural radiocarbon (14C) content of whole, gut voided Saccoglossus bromophenolosus collected in Lowes Cove, Maine, USA, was compared with that of a non-voided worm, sectioned individuals, and the natural product 2,4-dibromophenol (2,4-DBP) isolated from S. bromophenolosus. In all cases, the 14C content was greater than that of the sediment from which the enteropneusts were collected. The 14C content of 2 polychaetes, Glycera dibranchiata and Clymenella torquata, also collected from Lowes Cove, were similarly enriched in 14C compared to the bulk sediment. These results show that all 3 species consumed recently fixed carbon that was much newer than organic carbon in the bulk sediment. The value (+10.4‰) obtained for 2,4-DBP isolated from S. bromophenolosus in this study differs from that reported in a previous study (–170‰). The discrepancy is attributed to methodological differences. The importance of selecting an appropriate method when isolating compounds for natural abundance 14C analysis is discussed.This work was supported by the National Science Foundation (OCE-0221181) and the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution (with funding provided by the Camille and Henry Dreyfus Foundation and the J. Seward Johnson Fund, awarded to E.L.T.)

    Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks

    No full text
    Plastic debris 1900 fibers per wash. This suggests that a large proportion of microplastic fibers found in the marine environment may be derived from sewage as a consequence of washing of clothes. As the human population grows and people use more synthetic textiles, contamination of habitats and animals by microplastic is likely to increase

    Reconciling Biodiversity Conservation and Widespread Deployment of Renewable Energy Technologies in the UK.

    No full text
    Renewable energy will potentially make an important contribution towards the dual aims of meeting carbon emission reduction targets and future energy demand. However, some technologies have considerable potential to impact on the biodiversity of the environments in which they are placed. In this study, an assessment was undertaken of the realistic deployment potential of a range of renewable energy technologies in the UK, considering constraints imposed by biodiversity conservation priorities. We focused on those energy sources that have the potential to make important energy contributions but which might conflict with biodiversity conservation objectives. These included field-scale solar, bioenergy crops, wind energy (both onshore and offshore), wave and tidal stream energy. The spatially-explicit analysis considered the potential opportunity available for each technology, at various levels of ecological risk. The resultant maps highlight the energy resource available, physical and policy constraints to deployment, and ecological sensitivity (based on the distribution of protected areas and sensitive species). If the technologies are restricted to areas which currently appear not to have significant ecological constraints, the total potential energy output from these energy sources was estimated to be in the region of 5,547 TWh/yr. This would be sufficient to meet projected energy demand in the UK, and help to achieve carbon reduction targets. However, we highlight two important caveats. First, further ecological monitoring and surveillance is required to improve understanding of wildlife distributions and therefore potential impacts of utilising these energy sources. This is likely to reduce the total energy available, especially at sea. Second, some of the technologies under investigation are currently not deployed commercially. Consequently this potential energy will only be available if continued effort is put into developing these energy sources/technologies, to enable realisation of their full potential

    Opportunity and constraint mapping for wave energy.

    No full text
    <p>A) Opportunity map for wave energy developments (light green is prime opportunity, mid-green is good opportunity and dark green is technical opportunity showing physical constraints (red areas) and policy constraints (from level 1, least constrained, in light yellow, to level 3, most constrained, in brown); B) ecological sensitivity map for wave energy showing high sensitivity (purple areas), medium sensitivity (blue areas) and low/unknown sensitivity (green areas); and C) composite map showing remaining areas of opportunity for wave energy developments with low/unknown ecological sensitivity after all constraints have been applied (green areas).</p

    Opportunity and constraint mapping for bioenergy crops.

    No full text
    <p>A) Opportunity map for bioenergy crops in the UK (green areas) showing physical constraints (red areas) and policy constraints (yellow areas); B) ecological sensitivity map for bioenergy showing high sensitivity (purple areas), medium sensitivity (blue areas) and low/unknown sensitivity (green areas); and C) composite map showing remaining areas of opportunity for bioenergy crops with low/unknown ecological sensitivity after all constraints have been applied (green areas).</p

    Estimated proportions of the UK with different ecological sensitivities to ‘medium risk’ renewable technologies.

    No full text
    <p>A) Proportion of UK land area of low/unknown, medium and high sensitivity to onshore wind energy; B) proportion of UK land area of low/unknown, medium and high sensitivity to bioenergy or solar farms; C) proportion of UK sea area of low/unknown, medium and high sensitivity to offshore wind energy; D) proportion of UK sea area of low/unknown, medium and high sensitivity to tidal energy; and E) proportion of UK sea area of low/unknown, medium and high sensitivity to wave energy technologies.</p

    Estimated energy available through the deployment of offshore renewable energy technologies in the UK.

    No full text
    <p>Estimated sea areas available for the deployment of commercial-scale offshore wind, wave and tidal energy; potential installed capacity and annual energy outputs considering the available resource, physical constraints, policy constraints and ecological sensitivity.</p
    corecore