62 research outputs found

    Steroidogenesis in peripheral and transition zones of human prostate cancer tissue

    Get PDF
    The peripheral zone (PZ) and transition zone (TZ) represent about 70% of the human prostate gland with each zone having differential ability to develop prostate cancer. Androgens and their receptor are the primary driving cause of prostate cancer growth and eventually castration-resistant prostate cancer (CRPC). De novo steroidogenesis has been identified as a key mechanism that develops during CRPC. Currently, there is very limited information available on human prostate tissue steroidogenesis. The purpose of the present study was to investigate steroid metabolism in human prostate cancer tissues with comparison between PZ and TZ. Human prostate cancer tumors were procured from the patients who underwent radical prostatectomy without any neoadjuvant therapy. Human prostate homogenates were used to quantify steroid levels intrinsically present in the tissues as well as formed after incubation with 2 µg/mL of 17-hydroxypregnenolone (17-OH-pregnenolone) or progesterone. A Waters Acquity ultraperformance liquid chromatography coupled to a Quattro Premier XE tandem quadrupole mass spectrometer using a C18 column was used to measure thirteen steroids from the classical and backdoor steroidogenesis pathways. The intrinsic prostate tissue steroid levels were similar between PZ and TZ with dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT), pregnenolone and 17-OH-pregnenolone levels higher than the other steroids measured. Interestingly, 5-pregnan-3,20-dione, 5-pregnan-3-ol-20-one, and 5-pregnan-17-ol-3,20-dione formation was significantly higher in both the zones of prostate tissues, whereas, androstenedione, testosterone, DHT, and progesterone levels were significantly lower after 60 min incubation compared to the 0 min control incubations. The incubations with progesterone had a similar outcome with 5-pregnan-3,20-dione and 5-pregnan-3-ol-20-one levels were elevated and the levels of DHT were lower in both PZ and TZ tissues. The net changes in steroid formation after the incubation were more observable with 17-OH-pregnenolone than with progesterone. In our knowledge, this is the first report of comprehensive analyses of intrinsic prostate tissue steroids and precursor-driven steroid metabolism using a sensitive liquid chromatography-mass spectrometry assay. In summary, the PZ and TZ of human prostate exhibited similar steroidogenic ability with distinction in the manner each zone utilizes the steroid precursors to divert the activity towards backdoor pathway through a complex matrix of steroidogenic mechanisms

    Gonadal suppression alters axillary steroid secretions in men, but does that affect olfactory social signaling?

    Get PDF
    Background and objective: Luteinizing hormone-releasing hormone agonists (LHRHa) suppress gonadal hormone production and are commonly used to treat prostate cancer (PC) in men and conditions ranging from uterine fibroids to estrogen-sensitive cancers in women. They are also used to delay sexual development in children considering gender reassignment or experiencing premature puberty. As chemically castrating agents, LHRHa may affect cutaneous steroid secretions, which, in turn, could alter body odor and influence the psycho-sexual dynamics between individuals. The objectives of the present study were to determine (1) if LHRHa indeed alter cutaneous skin secretions, and (2) whether this leads to perceivable changes in body odor. Material and methods: Axillary skin secretions were collected on new cotton T-shirts worn by men undergoing androgen deprivation therapy with an LHRHa to treat PC (n = 10), both before starting the LHRHa and 3 months later. Healthy heterosexual university students (50 males, 50 females) were recruited to smell and rate the shirts for their masculinity, attractiveness, and intensity of odor. Liquid chromatography-mass spectrometry (LC-MS) was also used to analyze steroids extracted from the shirt samples. Results: LC-MS showed a statistically significant decline in the concentration of the androgenic metabolites, androsterone and 5α-androstane-3,17-dione. This confirms that LHRHa drugs that suppress gonadal hormone production markedly reduce cutaneous secretion of androgenic metabolic intermediates in adult males. However, no differences in odor were detected in the ratings of the shirts by male, female, nor male and female raters combined for any of the three variables assessed. Possible reasons why the human sniffers failed to perceive a change in odor are explored. Conclusion: Our data document that LHRHa alter steroid skin secretions in older men, but whether such changes alter the olfactory signals that might influence psychosocial interactions remains unresolved

    Dysregulated fibronectin trafficking by Hsp90 inhibition restricts prostate cancer cell invasion

    Get PDF
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.The molecular chaperone Hsp90 is overexpressed in prostate cancer (PCa) and is responsible for the folding, stabilization and maturation of multiple oncoproteins, which are implicated in PCa progression. Compared to first-in-class Hsp90 inhibitors such as 17-allylamino-demethoxygeldanamycin (17-AAG) that were clinically ineffective, second generation inhibitor AUY922 has greater solubility and efficacy. Here, transcriptomic and proteomic analyses of patient-derived PCa explants identified cytoskeletal organization as highly enriched with AUY922 treatment. Validation in PCa cell lines revealed that AUY922 caused marked alterations to cell morphology, and suppressed cell motility and invasion compared to vehicle or 17-AAG, concomitant with dysregulation of key extracellular matrix proteins such as fibronectin (FN1). Interestingly, while the expression of FN1 was increased by AUY922, FN1 secretion was significantly decreased. This resulted in cytosolic accumulation of FN1 protein within late endosomes, suggesting that AUY922 disrupts vesicular secretory trafficking pathways. Depletion of FN1 by siRNA knockdown markedly reduced the invasive capacity of PCa cells, phenocopying AUY922. These results highlight a novel mechanism of action for AUY922 beyond its established effects on cellular mitosis and survival and, furthermore, identifies extracellular matrix cargo delivery as a potential therapeutic target for the treatment of aggressive PCa

    Autophagy inhibition improves the chemotherapeutic efficacy of cruciferous vegetable-derived diindolymethane in a murine prostate cancer xenograft model

    No full text
    International audienceProstate cancer is the second leading cause of cancer-related deaths in men in North America and there is an urgent need for development of more effective therapeutic treatments against this disease. We have recently shown that diindolylmethane (DIM) and several of its halogenated derivatives (ring-DIMs) induce death and protective autophagy in human prostate cancer cells. However, the in vivo efficacy of ring-DIMs and the use of autophagy inhibitors as adjuvant therapy have not yet been studied in vivo. The objective of this study was to determine these effects on tumor growth in nude CD-1 mice bearing bioluminescent androgen-independent PC-3 human prostate cancer cells. We found that chloroquine (CQ) significantly sensitized PC-3 cells to death in the presence of sub-toxic concentrations of DIM or 4,4'-Br2DIM in vitro. Moreover, a combination of DIM (10 mg/kg) and CQ (60 mg/kg), 3× per week, significantly decreased PC-3 tumor growth in vivo after 3 and 4 weeks of treatment. Furthermore, 4,4'-Br2DIM at 10 mg/kg (3× per week) significantly inhibited tumour growth after 4 weeks of treatment. Tissues microarray analysis showed that DIM alone or combined with CQ induced apoptosis marker TUNEL; the combination also significantly inhibited the cell proliferation marker Ki67. In conclusion, we have confirmed that DIM and 4,4'-Br2DIM are effective agents against prostate cancer in vivo and shown that inhibition of autophagy with CQ enhances the anticancer efficacy of DIM. Our results suggest that including selective autophagy inhibitors as adjuvants may improve the efficacy of existing and novel drug therapies against prostate cancer

    Diindolylmethane and its halogenated derivatives induce protective autophagy in human prostate cancer cells via induction of the oncogenic protein AEG-1 and activation of AMP-activated protein kinase (AMPK)

    Get PDF
    International audience3,3'-Diindolylmethane (DIM) and its synthetic halogenated derivatives 4,4'-Br2- and 7,7'-Cl2DIM (ring-DIMs) have recently been shown to induce protective autophagy in human prostate cancer cells. The mechanisms by which DIM and ring-DIMs induce autophagy have not been elucidated. As DIM is a mitochondrial ATP-synthase inhibitor, we hypothesized that DIM and ring-DIMs induce autophagy via alteration of intracellular AMP/ATP ratios and activation of AMP-activated protein kinase (AMPK) signaling in prostate cancer cells. We found that DIM and ring-DIMs induced autophagy was accompanied by increased autophagic vacuole formation and conversion of LC3BI to LC3BII in LNCaP and C42B human prostate cancer cells. DIM and ring-DIMs also induced AMPK, ULK-1 (unc-51-like autophagy activating kinase 1; Atg1) and acetyl-CoA carboxylase (ACC) phosphorylation in a time-dependent manner. DIM and the ring-DIMs time-dependently induced the oncogenic protein astrocyte-elevated gene 1 (AEG-1) in LNCaP and C42B cells. Downregulation of AEG-1 or AMPK inhibited DIM- and ring-DIM-induced autophagy. Pretreatment with ULK1 inhibitor MRT 67307 or siRNAs targeting either AEG-1 or AMPK potentiated the cytotoxicity of DIM and ring-DIMs. Interestingly, downregulation of AEG-1 induced senescence in cells treated with overtly cytotoxic concentrations of DIM or ring-DIMs and inhibited the onset of apoptosis in response to these compounds. In summary, we have identified a novel mechanism for DIM- and ring-DIM-induced protective autophagy, via induction of AEG-1 and subsequent activation of AMPK. Our findings could facilitate the development of novel drug therapies for prostate cancer that include selective autophagy inhibitors as adjuvants

    Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer

    No full text
    Although systemic androgen deprivation prolongs life in advanced prostate cancer, remissions are temporary because patients almost uniformly progress to a state of a castration-resistant prostate cancer (CRPC) as indicated by recurring PSA. This complex process of progression does not seem to be stochastic as the timing and phenotype are highly predictable, including the observation that most androgen-regulated genes are reactivated despite castrate levels of serum androgens. Recent evidence indicates that intraprostatic levels of androgens remain moderately high following systemic androgen deprivation therapy, whereas the androgen receptor (AR) remains functional, and silencing the AR expression following castration suppresses tumor growth and blocks the expression of genes known to be regulated by androgens. From these observations, we hypothesized that CRPC progression is not independent of androgen-driven activity and that androgens may be synthesized de novo in CRPC tumors leading to AR activation. Using the LNCaP xenograft model, we showed that tumor androgens increase during CRPC progression in correlation to PSA up-regulation. We show here that all enzymes necessary for androgen synthesis are expressed in prostate cancer tumors and some seem to be up-regulated during CRPC progression. Using an ex vivo radiotracing assays coupled to high-performance liquid chromatography-radiometric/mass spectrometry detection, we show that tumor explants isolated from CRPC progression are capable of de novo conversion of [(14)C]acetic acid to dihydrotestosterone and uptake of [(3)H]progesterone allows detection of the production of six other steroids upstream of dihydrotestosterone. This evidence suggests that de novo androgen synthesis may be a driving mechanism leading to CRPC progression following castration
    corecore