201 research outputs found

    The TLR9 ligand CpG ODN 2006 is a poor adjuvant for the induction of de novo CD8+ T-cell responses in vitro

    Get PDF
    Toll-like receptor 9 (TLR9) agonists have gained traction in recent years as potential adjuvants for the induction of adaptive immune responses. It has nonetheless remained unclear to what extent such ligands can facilitate the priming events that generate antigen-specific effector and/or memory CD8+ T-cell populations. We used an established in vitro model to prime naive precursors from human peripheral blood mononuclear cells in the presence of various adjuvants, including CpG ODN 2006, a synthetic oligonucleotide TLR9 ligand (TLR9L). Unexpectedly, we found that TLR9L induced a suboptimal inflammatory milieu and promoted the antigen-driven expansion and functional maturation of naive CD8+ T cells ineffectively compared with either ssRNA40 or 2′3′-cGAMP, which activate other pattern recognition receptors (PRRs). TLR9L also inhibited the priming efficacy of 2′3′-cGAMP. Collectively, these results suggest that TLR9L is unlikely to be a good candidate for the optimal induction of de novo CD8+ T-cell responses, in contrast to adjuvants that operate via discrete PRRs

    Induction of Heterosubtypic Cross-Protection against Influenza by a Whole Inactivated Virus Vaccine:The Role of Viral Membrane Fusion Activity

    Get PDF
    BACKGROUND: The inability of seasonal influenza vaccines to effectively protect against infection with antigenically drifted viruses or newly emerging pandemic viruses underlines the need for development of cross-reactive influenza vaccines that induce immunity against a variety of virus subtypes. Therefore, potential cross-protective vaccines, e.g., whole inactivated virus (WIV) vaccine, that can target conserved internal antigens such as the nucleoprotein (NP) and/or matrix protein (M1) need to be explored. METHODOLOGY/PRINCIPAL FINDINGS: In the current study we show that a WIV vaccine, through induction of cross-protective cytotoxic T lymphocytes (CTLs), protects mice from heterosubtypic infection. This protection was abrogated after depletion of CD8+ cells in vaccinated mice, indicating that CTLs were the primary mediators of protection. Previously, we have shown that different procedures used for virus inactivation influence optimal activation of CTLs by WIV, most likely by affecting the membrane fusion properties of the virus. Specifically, inactivation with formalin (FA) severely compromises fusion activity of the virus, while inactivation with β-propiolactone (BPL) preserves fusion activity. Here, we demonstrate that vaccination of mice with BPL-inactivated H5N1 WIV vaccine induces solid protection from lethal heterosubtypic H1N1 challenge. By contrast, vaccination with FA-inactivated WIV, while preventing death after lethal challenge, failed to protect against development of disease and severe body weight loss. Vaccination with BPL-inactivated WIV, compared to FA-inactivated WIV, induced higher levels of specific CD8+ T cells in blood, spleen and lungs, and a higher production of granzyme B in the lungs upon H1N1 virus challenge. CONCLUSION/SIGNIFICANCE: The results underline the potential use of WIV as a cross-protective influenza vaccine candidate. However, careful choice of the virus inactivation procedure is important to retain membrane fusion activity and full immunogenicity of the vaccine

    Acute-Phase CD8 T cell responses that select for escape variants are needed to control live attenuated simian immunodeficiency virus

    Get PDF
    The overall CD8 T cell response to human/simian immunodeficiency virus (HIV/SIV) targets a collection of discrete epitope specificities. Some of these epitope-specific CD8 T cells emerge in the weeks and months following infection and rapidly select forsequence variants, whereas other CD8 T cell responses develop during the chronic infection phase and rarely select for sequence variants. In this study, we tested the hypothesis that acute-phase CD8 T cell responses that do not rapidly select for escapevariants are unable to control viral replication in vivo as well as those that do rapidly select for escape variants. We created a derivative of live attenuated SIV (SIVmac239Δnef) in which we ablated five epitopes that elicit early CD8 T cell responses and rapidly accumulate sequence variants in SIVmac239-infected Mauritian cynomolgus macaques (MCMs) that are homozygous for the M3 major histocompatibility complex (MHC) haplotype. This live attenuated SIV variant was called m3KOΔnef. Viremia was significantly higher in M3 homozygous MCMs infected withm3KOΔnef than in either MHC-mismatched MCMs infected with m3KOΔ nef or MCMs infected with SIVmac239Δnef. Three CD8 T cell responses, including two that do not rapidly select for escape variants, predominated during earlym3KOΔnef infection in the M3 homozygous MCMs, but these animals were unable to control viral replication. These re-sults provide evidence that acute-phase CD8 T cell responses that have the potential to rapidly select for escape variants in the early phase ofinfection are needed to establish viral control in vivo

    Tetramer enrichment reveals the presence of phenotypically diverse hepatitis C virus-specific CD8+T cells in chronic infection

    Get PDF
    Virus-specific CD8+ T cells are rarely detectable ex vivo by conventional methods during chronic hepatitis C virus (HCV) infection. In this study, however, we were able to detect and characterize HCV-specific CD8+ T cells in all chronically HCV genotype 1a-infected, HLA-A*02:01-positive patients analyzed by performing major histocompatibility complex (MHC) class I tetramer enrichment. Two-thirds of these enriched HCV-specific CD8+ T-cell populations displayed an effector memory phenotype, whereas, surprisingly, one-third displayed a naive-like phenotype despite ongoing viral replication. CD8+ T cells with an effector memory phenotype could not expand in vitro, suggesting exhaustion of these cells. Interestingly, some of the naive-like CD8+ T cells proliferated vigorously upon in vitro priming, whereas others did not. These differences were linked to the corresponding viral sequences in the respective patients. Indeed, naive-like CD8+ T cells from patients with the consensus sequence in the corresponding T-cell epitope did not expand in vitro. In contrast, in patients displaying sequence variations, we were able to induce HCV-specific CD8+ T-cell proliferation, which may indicate infection with a variant virus. Collectively, these data reveal the presence of phenotypically and functionally diverse HCV-specific CD8+ T cells at very low frequencies that are detectable in all chronically infected patients despite viral persistence. IMPORTANCE In this study, we analyzed CD8+ T-cell responses specific for HLA-A*02:01-restricted epitopes in chronically HCV-infected patients, using MHC class I tetramer enrichment. Importantly, we could detect HCV-specific CD8+ T-cell populations in all patients. To further characterize these HCV-specific CD8+ T-cell populations that are not detectable using conventional techniques, we performed phenotypic, functional, and viral sequence analyses. These data revealed different mechanisms for CD8+ T-cell failure in HCV infection, including T-cell exhaustion, viral escape, and functional impairment of naive-like HCV-specific CD8+ T cells

    Heterosubtypic cross-protection induced by whole inactivated influenza virus vaccine in mice:Influence of the route of vaccine administration

    Get PDF
    Background: Development of influenza vaccines capable of inducing broad protection against different virus subtypes is necessary given the ever-changing viral genetic landscape. Previously, we showed that vaccination with whole inactivated virus (WIV) induces heterosubtypic protection against lethal virus infection in mice. Whole inactivated virus-induced cross-protection was found to be mediated primarily by flu-specific CD8+ T cells. Objectives: As it has been demonstrated that the route of vaccine administration strongly influences both the quantity and quality of vaccine-induced immunity, in this study, we determined which route of WIV administration induces optimal heterosubtypic cross-protection. Methods: We compared the magnitude of the immune response and heterosubtypic protection against lethal A/PR/8/34 (H1N1) infection after subcutaneous (SC), intramuscular (IM), and intranasal (IN) vaccination with A/NIBRG-14 (H5N1) WIV. Results: Subcutaneous and IM administration was superior to IN administration of influenza WIV in terms of flu-specific CD8+ T-cell induction and protection of mice against lethal heterosubtypic challenge. Surprisingly, despite the very low flu-specific CD8+ T-cell responses detected in IN-vaccinated mice, these animals were partially protected, most likely due to cross-reactive IgA antibodies. Conclusion: The results of this study show that the magnitude of WIV-induced flu-specific CD8+ T-cell activity depends on the applied vaccination route. We conclude that parenteral administration of WIV vaccine, in particular IM injection, is superior to IN vaccine delivery for the induction of heterosubtypic cross-protection and generally appears to elicit stronger immune responses than mucosal vaccination with WIV

    Mutational and Structural Analysis of KIR3DL1 Reveals a Lineage-Defining Allotypic Dimorphism That Impacts Both HLA and Peptide Sensitivity

    Get PDF
    Killer Ig-like receptors (KIRs) control the activation of human NK cells via interactions with peptide-laden HLAs. KIR3DL1 is a highly polymorphic inhibitory receptor that recognizes a diverse array of HLA molecules expressing the Bw4 epitope, a group with multiple polymorphisms incorporating variants within the Bw4 motif. Genetic studies suggest that KIR3DL1 variation has functional significance in several disease states, including HIV infection. However, owing to differences across KIR3DL1 allotypes, HLA-Bw4, and associated peptides, the mechanistic link with biological outcome remains unclear. In this study, we elucidated the impact of KIR3DL1 polymorphism on peptide-laden HLA recognition. Mutational analysis revealed that KIR residues involved in water-mediated contacts with the HLA-presented peptide influence peptide binding specificity. In particular, residue 282 (glutamate) in the D2 domain underpins the lack of tolerance of negatively charged C-terminal peptide residues. Allotypic KIR3DL1 variants, defined by neighboring residue 283, displayed differential sensitivities to HLA-bound peptide, including the variable HLA-B*57:01-restricted HIV-1 Gag-derived epitope TW10. Residue 283, which has undergone positive selection during the evolution of human KIRs, also played a central role in Bw4 subtype recognition by KIR3DL1. Collectively, our findings uncover a common molecular regulator that controls HLA and peptide discrimination without participating directly in peptide-laden HLA interactions. Furthermore, they provide insight into the mechanics of interaction and generate simple, easily assessed criteria for the definition of KIR3DL1 functional groupings that will be relevant in many clinical applications, including bone marrow transplantation

    Divergent roles for antigenic drive in the aetiology of primary versus dasatinib-associated CD8(+) TCR-Vβ(+) expansions

    Get PDF
    CD8(+) T-cell expansions are the primary manifestation of T-cell large granular lymphocytic leukemia (T-LGLL), which is frequently accompanied by neutropenia and rheumatoid arthritis, and also occur as a secondary phenomenon in leukemia patients treated with dasatinib, notably in association with various drug-induced side-effects. However, the mechanisms that underlie the genesis and maintenance of expanded CD8(+) T-cell receptor (TCR)-V beta(+) populations in these patient groups have yet to be fully defined. In this study, we performed a comprehensive phenotypic and clonotypic assessment of expanded (TCR-V beta(+)) and residual (TCR-V beta(-)) CD8(+) T-cell populations in T-LGLL and dasatinib-treated chronic myelogenous leukemia (CML) patients. The dominant CD8(+) TCR-V beta(+) expansions in T-LGLL patients were largely monoclonal and highly differentiated, whereas the dominant CD8(+) TCR-V beta(+) expansions in dasatinib-treated CML patients were oligoclonal or polyclonal, and displayed a broad range of memory phenotypes. These contrasting features suggest divergent roles for antigenic drive in the immunopathogenesis of primary versus dasatinib-associated CD8(+) TCR-V beta(+) expansions.Peer reviewe

    PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection

    Get PDF
    Here, we report on the expression of programmed death (PD)-1 on human virus-specific CD8+ T cells and the effect of manipulating signaling through PD-1 on the survival, proliferation, and cytokine function of these cells. PD-1 expression was found to be low on naive CD8+ T cells and increased on memory CD8+ T cells according to antigen specificity. Memory CD8+ T cells specific for poorly controlled chronic persistent virus (HIV) more frequently expressed PD-1 than memory CD8+ T cells specific for well-controlled persistent virus (cytomegalovirus) or acute (vaccinia) viruses. PD-1 expression was independent of maturational markers on memory CD8+ T cells and was not directly associated with an inability to produce cytokines. Importantly, the level of PD-1 surface expression was the primary determinant of apoptosis sensitivity of virus-specific CD8+ T cells. Manipulation of PD-1 led to changes in the ability of the cells to survive and expand, which, over several days, affected the number of cells expressing cytokines. Therefore, PD-1 is a major regulator of apoptosis that can impact the frequency of antiviral T cells in chronic infections such as HIV, and could be manipulated to improve HIV-specific CD8+ T cell numbers, but possibly not all functions in vivo

    Degenerate recognition of MHC class I molecules with Bw4 and Bw6 motifs by a killer cell Ig-like receptor 3DL expressed by macaque NK cells

    Get PDF
    The killer cell immunoglobulin-like receptors (KIRs) expressed on the surface of natural killer (NK) cells recognize specific major histocompatibility complex class I (MHC-I) molecules and regulate NK cell activities against pathogen-infected cells and neoplasia. In human immunodeficiency virus (HIV) infection, survival is linked to host KIR and MHC-I genotypes. In the simian immunodeficiency virus (SIV) macaque model, however, the role of NK cells is unclear due to the lack of information on KIR-MHC interactions. Here, we describe the first characterization of a KIR-MHC interaction in pig-tailed macaques (Macaca nemestrina). Initially, we identified three distinct subsets of macaque NK cells that stained ex vivo with macaque MHC-I tetramers loaded with SIV peptides. We then cloned cDNAs corresponding to 15 distinct KIR3D alleles. One of these, KIR049-4, was an inhibitory KIR3DL that bound MHC-I tetramers and prevented activation, degranulation and cytokine production by macaque NK cells after engagement with specific MHC-I molecules on the surface of target cells. Furthermore, KIR049-4 recognized a broad range of MHC-I molecules carrying not only the Bw4 motif but also Bw6 and non-Bw4/Bw6 motifs. This degenerate, yet peptide-dependent, MHC reactivity differs markedly from the fine specificity of human KIRs
    • …
    corecore