9 research outputs found

    Genetic analysis of 17 Y-STRs in a Mestizo population from the Central Valley of Mexico

    Get PDF
    This study aims to portray the complex diversity of the Mexican Mestizo population, which represents 98.8% of the entire population of Mexico. We compiled extended haplotype data of the Y chromosome from populations in the Central Valley of Mexico (CVM), which were compared to other Mestizo and parental (Amerindian, European and African) populations. A complex ancestral relationship was found in the CVM population, suggesting cosmopolitan origins. Nevertheless, the most preeminent lineages point towards a European ancestry, where the R1b was the most frequent. In addition, important frequencies of Amerindian linages were also found in the Mestizo sample studied. Interestingly, the Amerindian ancestry showed a remarkable substructure, which was represented by the two main founding lineages: QL54 (x M3) and M3. However, even within each lineage a high diversity was found despite the small number of samples bearers of these lineages. Further, we detected important genetic differences between the CVM populations and the Mexican Mestizo populations from the north and south. This result points to the fact that Mestizo populations present different ancestral proportions, which are related to the demographic events that gave origin to each population. Finally, we provide additional forensic statistical parameters that are useful in the interpretation of genetic analysis where autosomal loci are limited. Our findings illustrate the complex genetic background of the Mexican Mestizo population and reinforce the need to encompass more geographic regions to generate more robust data for forensic applications

    Metals in Urine and Peripheral Arterial Disease

    Get PDF
    Exposure to metals may promote atherosclerosis. Blood cadmium and lead were associated with peripheral arterial disease (PAD) in the 1999–2000 National Health and Nutrition Examination Survey (NHANES). In the present study we evaluated the association between urinary levels of cadmium, lead, barium, cobalt, cesium, molybdenum, antimony, thallium, and tungsten with PAD in a cross-sectional analysis of 790 participants ≥40 years of age in NHANES 1999–2000. PAD was defined as a blood pressure ankle brachial index < 0.9 in at least one leg. Metals were measured in casual (spot) urine specimens by inductively coupled plasma–mass spectrometry. After multivariable adjustment, subjects with PAD had 36% higher levels of cadmium in urine and 49% higher levels of tungsten compared with noncases. The adjusted odds ratio for PAD comparing the 75th to the 25th percentile of the cadmium distribution was 3.05 [95% confidence interval (CI), 0.97 to 9.58]; that for tungsten was 2.25 (95% CI, 0.97 to 5.24). PAD risk increased sharply at low levels of antimony and remained elevated beyond 0.1 μg/L. PAD was not associated with other metals. In conclusion, urinary cadmium, tungsten, and possibly antimony were associated with PAD in a representative sample of the U.S. population. For cadmium, these results strengthen previous findings using blood cadmium as a biomarker, and they support its role in atherosclerosis. For tungsten and antimony, these results need to be interpreted cautiously in the context of an exploratory analysis but deserve further study. Other metals in urine were not associated with PAD at the levels found in the general population

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    workingsci2

    No full text
    Exposure to metals may promote atherosclerosis. Blood cadmium and lead were associated with peripheral arterial disease (PAD) in the 1999-2000 National Health and Nutrition Examination Survey (NHANES). In the present study we evaluated the association between urinary levels of cadmium, lead, barium, cobalt, cesium, molybdenum, antimony, thallium, and tungsten with PAD in a cross-sectional analysis of 790 participants ≥ 40 years of age in NHANES 1999-2000. PAD was defined as a blood pressure ankle brachial index &lt; 0.9 in at least one leg. Metals were measured in casual (spot) urine specimens by inductively coupled plasma-mass spectrometry. After multivariable adjustment, subjects with PAD had 36% higher levels of cadmium in urine and 49% higher levels of tungsten compared with noncases. The adjusted odds ratio for PAD comparing the 75th to the 25th percentile of the cadmium distribution was 3.05 [95% confidence interval (CI), 0.97 to 9.58]; that for tungsten was 2.25 (95% CI, 0.97 to 5.24). PAD risk increased sharply at low levels of antimony and remained elevated beyond 0.1 µg/L. PAD was not associated with other metals. In conclusion, urinary cadmium, tungsten, and possibly antimony were associated with PAD in a representative sample of the U.S. population. For cadmium, these results strengthen previous findings using blood cadmium as a biomarker, and they support its role in atherosclerosis. For tungsten and antimony, these results need to be interpreted cautiously in the context of an exploratory analysis but deserve further study. Other metals in urine were not associated with PAD at the levels found in the general population
    corecore