716 research outputs found

    SBI Intervention: An Old Problem- A New Perspective

    Get PDF
    This research effort attempted to determine if SB/ intervention would change the perception of business problems by not only the business owner but also the student consultants. This focus further to encompassed firms that could be classified in either Stage I or Stage II of development. Even though there were no changes in perception by student consultants, and mixed results of whether stage development affected perceptual differences, strong support was given to the proposition that owners, overall, did change their perception of existing problems after SBI intervention

    Hall-Effect Sign Anomaly and Small-Polaronic Conduction in (La_{1-x}Gd_x)_{0.67}Ca_{0.33}MnO_3

    Full text link
    The Hall coefficient of Gd-doped La_{2/3}Ca_{1/3}MnO_3 exhibits Arrhenius behavior over a temperature range from 2T_c to 4T_c, with an activation energy very close to 2/3 that of the electrical conductivity. Although both the doping level and thermoelectric coefficient indicate hole-like conduction, the Hall coefficient is electron-like. This unusual result provides strong evidence in favor of small-polaronic conduction in the paramagnetic regime of the manganites.Comment: 11 pages, 4 figures, uses revtex.st

    SBI Intervention: An Old Problem- A New Perspective

    Get PDF
    This research effort attempted to determine if SB/ intervention would change the perception of business problems by not only the business owner but also the student consultants. This focus further to encompassed firms that could be classified in either Stage I or Stage II of development. Even though there were no changes in perception by student consultants, and mixed results of whether stage development affected perceptual differences, strong support was given to the proposition that owners, overall, did change their perception of existing problems after SBI  intervention

    Metal-insulator transition and the Pr3+^{3+}/Pr4+^{4+} valence shift in (Pr1−y_{1-y}Yy_{y})0.7_{0.7}Ca0.3_{0.3}CoO3_3

    Full text link
    The magnetic, electric and thermal properties of the (Ln1−yLn_{1-y}Yy_{y})0.7_{0.7}Ca0.3_{0.3}CoO3_3 perovskites (LnLn~=~Pr, Nd) were investigated down to very low temperatures. The main attention was given to a peculiar metal-insulator transition, which is observed in the praseodymium based samples with y=0.075y=0.075 and 0.15 at TM−I=64T_{M-I}=64 and 132~K, respectively. The study suggests that the transition, reported originally in Pr0.5_{0.5}Ca0.5_{0.5}CoO3_3, is not due to a mere change of cobalt ions from the intermediate- to the low-spin states, but is associated also with a significant electron transfer between Pr3+^{3+} and Co3+^{3+}/Co4+^{4+} sites, so that the praseodymium ions occur below TM−IT_{M-I} in a mixed Pr3+^{3+}/Pr4+^{4+} valence. The presence of Pr4+^{4+} ions in the insulating phase of the yttrium doped samples (Pr1−y_{1-y}Yy_{y})0.7_{0.7}Ca0.3_{0.3}CoO3_3 is evidenced by Schottky peak originating in Zeeman splitting of the ground state Kramers doublet. The peak is absent in pure Pr0.7_{0.7}Ca0.3_{0.3}CoO3_3 in which metallic phase, based solely on non-Kramers Pr3+^{3+} ions, is retained down to the lowest temperature.Comment: 10 figure

    Berry phases and pairing symmetry in Holstein-Hubbard polaron systems

    Full text link
    We study the tunneling dynamics of dopant-induced hole polarons which are self-localized by electron-phonon coupling in a two-dimensional antiferro- magnet. Our treatment is based on a path integral formulation of the adia- batic approximation, combined with many-body tight-binding, instanton, con- strained lattice dynamics, and many-body exact diagonalization techniques. Our results are mainly based on the Holstein-tJtJ and, for comparison, on the Holstein-Hubbard model. We also study effects of 2nd neighbor hopping and long-range electron-electron Coulomb repulsion. The polaron tunneling dynamics is mapped onto an effective low-energy Hamiltonian which takes the form of a fermion tight-binding model with occupancy dependent, predominant- ly 2nd and 3rd neighbor tunneling matrix elements, excluded double occupan- cy, and an effective intersite charge interactions. Antiferromagnetic spin correlations in the original many-electron Hamiltonian are reflected by an attractive contribution to the 1st neighbor charge interaction and by Berry phase factors which determine the signs of effective polaron tunneling ma- trix elements. In the two-polaron case, these phase factors lead to polaron pair wave functions of either dx2−y2d_{x^2-y^2}-wave symmetry or p-wave symme- try with zero and nonzero total pair momentum, respectively. Implications for the doping dependent isotope effect, pseudo-gap and Tc of a superconduc- ting polaron pair condensate are discussed/compared to observed in cuprates.Comment: 23 pages, revtex, 13 ps figure

    Systematic Observations of the Availability and Use of Instructional Technology in Urban Middle School Classrooms

    Get PDF
    The present study uses systematic observations to investigate the availability and use of instructional technology in 64 middle school classrooms serving predominantly minority students from economically disadvantaged families. The T3 Overall Classroom Observation Measure, a high-inference walk-through instrument, was developed to examine: (a) types and use of technology present in the classroom, (b) teachers’ technology usage, (c) students’ technology usage, (d) teachers’ general instructional behaviors, and (e) students’ general behaviors. The results revealed that instructional technology was widely available in the classrooms, but most teachers and students were only using it to “some extent.

    Numerical Modeling of Advanced materials

    Get PDF
    The finite element (FE) method is widely used to numerically simulate forming processes. The accuracy of an FE analysis strongly depends on the extent to which a material model can represent the real material behavior. The use of new materials requires complex material models which are able to describe complex material behavior like strain path sensitivity and phase transformations. Different yield loci and hardening laws are presented in this article, together with experimental results showing this complex behavior. Recommendations on how to further improve the constitutive models are given. In the area of damage and fracture behavior, a non-local damage model is presented, which provides a better prediction of sheet failure than the conventional Forming Limit Diagram

    Automatic Code Placement Alternatives for Ad-Hoc And Sensor Networks

    Full text link
    Developing applications for ad-hoc and sensor networks poses significant challenges. Many interesting applications in these domains entail collaboration between components distributed throughout an ad-hoc network. Defining these components, optimally placing them on nodes in the ad-hoc network and relocating them in response to changes is a fundamental problem faced by such applications. Manual approaches to code and data migration are not only platform-dependent and error-prone, but also needlessly complicate application development. Further, locally optimal decisions made by applications that share the same network can lead to globally unstable and energy inefficient behavior. In this paper we describe the design and implementation of a distributed operating system for ad-hoc and sensor networks whose goal is to enable power-aware, adaptive, and easy-to-develop ad-hoc networking applications. Our system achieves this goal by providing a single system image of a unified Java virtual machine to applications over an ad-hoc collection of heterogeneous nodes. It automatically and transparently partitions applications into components and dynamically finds a placement of these components on nodes within the ad-hoc network to reduce energy consumption and increase system longevity. This paper outlines the design of our system and evaluates two practical, power-aware, online algorithms for object placement that form the core of our system. We demonstrate that our algorithms can increase system longevity by a factor of four to five by effectively distributing energy consumption, and are suitable for use in an energy efficient operating system in which applications are distributed automatically and transparently
    • …
    corecore