728 research outputs found
Hall-Effect Sign Anomaly and Small-Polaronic Conduction in (La_{1-x}Gd_x)_{0.67}Ca_{0.33}MnO_3
The Hall coefficient of Gd-doped La_{2/3}Ca_{1/3}MnO_3 exhibits Arrhenius
behavior over a temperature range from 2T_c to 4T_c, with an activation energy
very close to 2/3 that of the electrical conductivity. Although both the doping
level and thermoelectric coefficient indicate hole-like conduction, the Hall
coefficient is electron-like. This unusual result provides strong evidence in
favor of small-polaronic conduction in the paramagnetic regime of the
manganites.Comment: 11 pages, 4 figures, uses revtex.st
Berry phases and pairing symmetry in Holstein-Hubbard polaron systems
We study the tunneling dynamics of dopant-induced hole polarons which are
self-localized by electron-phonon coupling in a two-dimensional antiferro-
magnet. Our treatment is based on a path integral formulation of the adia-
batic approximation, combined with many-body tight-binding, instanton, con-
strained lattice dynamics, and many-body exact diagonalization techniques. Our
results are mainly based on the Holstein- and, for comparison, on the
Holstein-Hubbard model. We also study effects of 2nd neighbor hopping and
long-range electron-electron Coulomb repulsion. The polaron tunneling dynamics
is mapped onto an effective low-energy Hamiltonian which takes the form of a
fermion tight-binding model with occupancy dependent, predominant- ly 2nd and
3rd neighbor tunneling matrix elements, excluded double occupan- cy, and an
effective intersite charge interactions. Antiferromagnetic spin correlations in
the original many-electron Hamiltonian are reflected by an attractive
contribution to the 1st neighbor charge interaction and by Berry phase factors
which determine the signs of effective polaron tunneling ma- trix elements. In
the two-polaron case, these phase factors lead to polaron pair wave functions
of either -wave symmetry or p-wave symme- try with zero and
nonzero total pair momentum, respectively. Implications for the doping
dependent isotope effect, pseudo-gap and Tc of a superconduc- ting polaron pair
condensate are discussed/compared to observed in cuprates.Comment: 23 pages, revtex, 13 ps figure
Study on instability and forming limit of sheet metal under stretch-bending
Under stretch-bending conditions, a significant tensile stress gradient through sheet thickness is induced, especially for a small punch radius. The traditional instability theories were developed assuming a uniform tensile stress / strain distribution through thickness; hence, may lead to unreliable prediction of stretch-bending formability. In this study, the instability behavior of sheet metal under stretch-bending is analyzed via FE-simulation of an Angular Stretch-Bend Test (ASBT). In order to reflect the influence of bending, contact normal stress etc., solid elements are used in the simulation. Three deformation stages are identified: (a). stable deformation; (b). strain localization through sheet thickness; (c). localized necking. Based on the instability characteristics, a localized necking criterion is proposed for predicting forming limits of sheet metal under stretch-bending. By combining the proposed criterion and solid element simulation, good agreement between numerical and experimental results is indicated. This work provides a new approach for predicting stretch-bend formability with sufficient accuracy and convenience.</jats:p
Small and large polarons in nickelates, manganites, and cuprates
By comparing the optical conductivities of La_{1.67}Sr_{0.33}NiO_{4} (LSNO),
Sr_{1.5}La_{0.5}MnO_4 (SLMO), Nd_2CuO_{4-y} (NCO), and
Nd_{1.96}Ce_{0.04}CuO_{4} (NCCO), we have identified a peculiar behavior of
polarons in this cuprate family. While in LSNO and SLMO small polarons localize
into ordered structures below a transition temperature, in those cuprates the
polarons appear to be large, and at low T their binding energy decreases. This
reflects into an increase of the polaron radius, which may trigger coherent
transport.Comment: File latex, 15 p. incl. 4 Figs. epsf, to appear on the Journal of
Superconductivity - Proc. "Stripes 1996" - Roma Dec 199
Breakdown of the lattice polaron picture in La0.7Ca0.3MnO3 single crystals
When heated through the magnetic transition at Tc, La0.7Ca0.3MnO3 changes
from a band metal to a polaronic insulator. The Hall constant R_H, through its
activated behavior and sign anomaly, provides key evidence for polaronic
behavior. We use R_H and the Hall mobility to demonstrate the breakdown of the
polaron phase. Above 1.4Tc, the polaron picture holds in detail, while below,
the activation energies of both R_H and the mobility deviate strongly from
their polaronic values. These changes reflect the presence of metallic,
ferromagnetic fluctuations, in the volume of which the Hall effect develops
additional contributions tied to quantal phases.Comment: 11 pages, 3 figures, final version to appear in Phys. Rev. B Rapi
Third sound measurements of superfluid He films on multiwall carbon nanotubes below 1K
Third sound is studied for superfluid films of 4He adsorbed on multiwall
carbon nanotubes packed into an annular resonator. The third sound is generated
with mechanical oscillation of the cell, and detected with carbon bolometers. A
filling curve at temperatures near 250 mK shows oscillations in the third sound
velocity, with maxima at the completion of the 4th and 5th atomic layers. Sharp
changes in the Q factor of the third sound are found at partial layer fillings.
Temperature sweeps at a number of fill points show strong broadening effects on
the Kosterlitz-Thouless (KT) transition, and rapidly increasing dissipation, in
qualitative agreement with the predictions of Machta and Guyer. At the 4th
layer completion there is a sudden reduction of the transition temperature
, and then a recovery back to linear variation with temperature,
although the slope is considerably smaller than the KT prediction. Some of
these effects may be related to changes in the gas-liquid coexistence regions.Comment: 5 pages, 5 figures, Proceedings of LT2
Energy thresholds for discrete breathers in one-, two- and three-dimensional lattices
Discrete breathers are time-periodic, spatially localized solutions of
equations of motion for classical degrees of freedom interacting on a lattice.
They come in one-parameter families. We report on studies of energy properties
of breather families in one-, two- and three-dimensional lattices. We show that
breather energies have a positive lower bound if the lattice dimension of a
given nonlinear lattice is greater than or equal to a certain critical value.
These findings could be important for the experimental detection of discrete
breathers.Comment: 10 pages, LaTeX, 4 figures (ps), Physical Review Letters, in prin
Infrared response of ordered polarons in layered perovskites
We report on the infrared absorption spectra of three oxides where charged
superlattices have been recently observed in diffraction experiments. In
LaSrNiO, polaron localization is found to suppress the
low-energy conductivity through the opening of a gap and to split the
- vibrational manifold of the oxygen octahedra. Similar effects
are detected in SrLaMnO and in LaNiO, with
peculiar differences related to the type of charge ordering.Comment: File latex, 11 p. + 3 Figures, to appear on Phys. Rev. B (Rapid
Commun.), 1 Oct. 1996. The figures will be faxed upon request.
E-mail:[email protected] Fax: +39-6-446315
Polaron band formation in the Holstein model
We present numerical exact results for the polaronic band structure of the
Holstein molecular crystal model in one and two dimensions. The use of direct
Lanczos diagonalization technique, preserving the full dynamics and quantum
nature of phonons, allows us to analyze in detail the renormalization of both
quasiparticle bandwidth and dispersion by the electron-phonon interaction. For
the two-dimensional case some of our exact data are compared with the results
obtained in the framework of a recently developed finite cluster
strong-coupling perturbation theory.Comment: 10 pages (LaTeX), 6 figures (ps), submitted to Phys. Rev.
- …