20 research outputs found

    87th Legislature of Texas

    Get PDF
    Report from the Sunset Commission regarding the Texas Department of Licensing and Regulation, including decisions on statutory recommendations for the Texas Legislature and management recommendations for the agency, as well as information from the original staff report, such as the need for, performance by, and improvements to the Texas Department of Licensing and Regulation

    Impact of the Salud Mesoamerica Initiative on delivery care choices in Guatemala, Honduras, and Nicaragua

    Get PDF
    Background The Salud Mesoamérica Initiative (SMI) is a public-private collaboration aimed to improve maternal and child health conditions in the poorest populations of Mesoamerica through a results-based aid mechanism. We assess the impact of SMI on the staffing and availability of equipment and supplies for delivery care, the proportion of institutional deliveries, and the proportion of women who choose a facility other than the one closest to their locality of residence for delivery. Methods We used a quasi-experimental design, including baseline and follow-up measurements between 2013 and 2018 in intervention and comparison areas of Guatemala, Nicaragua, and Honduras. We collected information on 8754 births linked to the health facility closest to the mother’s locality of residence and the facility where the delivery took place (if attended in a health facility). We fit difference-in-difference models, adjusting for women’s characteristics (age, parity, education), household characteristics, exposure to health promotion interventions, health facility level, and country. Results Equipment, inputs, and staffing of facilities improved after the Initiative in both intervention and comparison areas. After adjustment for covariates, institutional delivery increased between baseline and follow-up by 3.1 percentage points (β = 0.031, 95% CI -0.03, 0.09) more in intervention areas than in comparison areas. The proportion of women in intervention areas who chose a facility other than their closest one to attend the delivery decreased between baseline and follow-up by 13 percentage points (β = − 0.130, 95% CI -0.23, − 0.03) more than in the comparison group. Conclusions Results indicate that women in intervention areas of SMI are more likely to go to their closest facility to attend delivery after the Initiative has improved facilities’ capacity, suggesting that results-based aid initiatives targeting poor populations, like SMI, can increase the use of facilities closest to the place of residence for delivery care services. This should be considered in the design of interventions after the COVID-19 pandemic may have changed health and social conditions.Peer Reviewe

    Bringing a health systems modelling approach to complex evaluations: multicountry applications in HIV, TB and malaria

    No full text
    IntroductionUnderstanding how to deliver interventions more effectively is a growing emphasis in Global Health. Simultaneously, health system strengthening is a key component to improving delivery. As a result, it is challenging to evaluate programme implementation while reflecting real-world complexity. We present our experience in using a health systems modelling approach as part of a mixed-methods evaluation and describe applications of these models.MethodsWe developed a framework for how health systems translate financial inputs into health outcomes, with in-country and international experts. We collated available data to measure framework indicators and developed models for malaria in Democratic Republic of the Congo (DRC), and tuberculosis in Guatemala and Senegal using Bayesian structural equation modelling. We conducted several postmodelling analyses: measuring efficiency, assessing bottlenecks, understanding mediation, analysing the cascade of care and measuring subnational effectiveness.ResultsThe DRC model indicated a strong relationship between shipment of commodities and utilisation thereof. In Guatemala, the strongest model coefficients were more evenly distributed. Results in Senegal varied most, but pathways related to community care had the strongest relationships. In DRC, we used model results to estimate the end-to-end cost of delivering commodities. In Guatemala, we used model results to identify potential bottlenecks and understand mediation. In Senegal, we used model results to identify potential weak links in the cascade of care, and explore subnationally.ConclusionThis study demonstrates a complementary modelling approach to traditional evaluation methods. Although these models have limitations, they can be applied in a variety of ways to gain greater insight into implementation and functioning of health service delivery.</jats:sec

    Impact of the Salud Mesoamerica Initiative on delivery care choices in Guatemala, Honduras, and Nicaragua

    No full text
    Abstract Background The Salud Mesoamérica Initiative (SMI) is a public-private collaboration aimed to improve maternal and child health conditions in the poorest populations of Mesoamerica through a results-based aid mechanism. We assess the impact of SMI on the staffing and availability of equipment and supplies for delivery care, the proportion of institutional deliveries, and the proportion of women who choose a facility other than the one closest to their locality of residence for delivery. Methods We used a quasi-experimental design, including baseline and follow-up measurements between 2013 and 2018 in intervention and comparison areas of Guatemala, Nicaragua, and Honduras. We collected information on 8754 births linked to the health facility closest to the mother’s locality of residence and the facility where the delivery took place (if attended in a health facility). We fit difference-in-difference models, adjusting for women’s characteristics (age, parity, education), household characteristics, exposure to health promotion interventions, health facility level, and country. Results Equipment, inputs, and staffing of facilities improved after the Initiative in both intervention and comparison areas. After adjustment for covariates, institutional delivery increased between baseline and follow-up by 3.1 percentage points (β = 0.031, 95% CI -0.03, 0.09) more in intervention areas than in comparison areas. The proportion of women in intervention areas who chose a facility other than their closest one to attend the delivery decreased between baseline and follow-up by 13 percentage points (β = − 0.130, 95% CI -0.23, − 0.03) more than in the comparison group. Conclusions Results indicate that women in intervention areas of SMI are more likely to go to their closest facility to attend delivery after the Initiative has improved facilities’ capacity, suggesting that results-based aid initiatives targeting poor populations, like SMI, can increase the use of facilities closest to the place of residence for delivery care services. This should be considered in the design of interventions after the COVID-19 pandemic may have changed health and social conditions. </jats:sec

    Additional file 1 of Impact of the Salud Mesoamerica Initiative on delivery care choices in Guatemala, Honduras, and Nicaragua

    No full text
    Additional file 1: Supplemental Table 1. Additional characteristics of women at baseline in intervention and comparison groups, overall and by country. Supplemental Table 2. Characteristics of women at follow-up in intervention and comparison groups, overall and by country. Supplemental Table 3. Unweighted OLS models predicting facility score, overall and by country. Supplemental Table 4. Results of medical record review of uncomplicated deliveries in the last 2 years at baseline and follow-up for intervention and comparison groups by country. Supplemental Table 5. Reasons for not delivering in facility at baseline and follow-up in intervention and comparison groups by country

    Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: a statistical analysis

    No full text
    Background: timely, accurate, and comprehensive estimates of SARS-CoV-2 daily infection rates, cumulative infections, the proportion of the population that has been infected at least once, and the effective reproductive number (Reffective) are essential for understanding the determinants of past infection, current transmission patterns, and a population's susceptibility to future infection with the same variant. Although several studies have estimated cumulative SARS-CoV-2 infections in select locations at specific points in time, all of these analyses have relied on biased data inputs that were not adequately corrected for. In this study, we aimed to provide a novel approach to estimating past SARS-CoV-2 daily infections, cumulative infections, and the proportion of the population infected, for 190 countries and territories from the start of the pandemic to Nov 14, 2021. This approach combines data from reported cases, reported deaths, excess deaths attributable to COVID-19, hospitalisations, and seroprevalence surveys to produce more robust estimates that minimise constituent biases. Methods: we produced a comprehensive set of global and location-specific estimates of daily and cumulative SARS-CoV-2 infections through Nov 14, 2021, using data largely from Johns Hopkins University (Baltimore, MD, USA) and national databases for reported cases, hospital admissions, and reported deaths, as well as seroprevalence surveys identified through previous reviews, SeroTracker, and governmental organisations. We corrected these data for known biases such as lags in reporting, accounted for under-reporting of deaths by use of a statistical model of the proportion of excess mortality attributable to SARS-CoV-2, and adjusted seroprevalence surveys for waning antibody sensitivity, vaccinations, and reinfection from SARS-CoV-2 escape variants. We then created an empirical database of infection–detection ratios (IDRs), infection–hospitalisation ratios (IHRs), and infection–fatality ratios (IFRs). To estimate a complete time series for each location, we developed statistical models to predict the IDR, IHR, and IFR by location and day, testing a set of predictors justified through published systematic reviews. Next, we combined three series of estimates of daily infections (cases divided by IDR, hospitalisations divided by IHR, and deaths divided by IFR), into a more robust estimate of daily infections. We then used daily infections to estimate cumulative infections and the cumulative proportion of the population with one or more infections, and we then calculated posterior estimates of cumulative IDR, IHR, and IFR using cumulative infections and the corrected data on reported cases, hospitalisations, and deaths. Finally, we converted daily infections into a historical time series of Reffective by location and day based on assumptions of duration from infection to infectiousness and time an individual spent being infectious. For each of these quantities, we estimated a distribution based on an ensemble framework that captured uncertainty in data sources, model design, and parameter assumptions. Findings: global daily SARS-CoV-2 infections fluctuated between 3 million and 17 million new infections per day between April, 2020, and October, 2021, peaking in mid-April, 2021, primarily as a result of surges in India. Between the start of the pandemic and Nov 14, 2021, there were an estimated 3·80 billion (95% uncertainty interval 3·44–4·08) total SARS-CoV-2 infections and reinfections combined, and an estimated 3·39 billion (3·08–3·63) individuals, or 43·9% (39·9–46·9) of the global population, had been infected one or more times. 1·34 billion (1·20–1·49) of these infections occurred in south Asia, the highest among the seven super-regions, although the sub-Saharan Africa super-region had the highest infection rate (79·3 per 100 population [69·0–86·4]). The high-income super-region had the fewest infections (239 million [226–252]), and southeast Asia, east Asia, and Oceania had the lowest infection rate (13·0 per 100 population [8·4–17·7]). The cumulative proportion of the population ever infected varied greatly between countries and territories, with rates higher than 70% in 40 countries and lower than 20% in 39 countries. There was no discernible relationship between Reffective and total immunity, and even at total immunity levels of 80%, we observed no indication of an abrupt drop in Reffective, indicating that there is not a clear herd immunity threshold observed in the data.Interpretation: COVID-19 has already had a staggering impact on the world up to the beginning of the omicron (B.1.1.529) wave, with over 40% of the global population infected at least once by Nov 14, 2021. The vast differences in cumulative proportion of the population infected across locations could help policy makers identify the transmission-prevention strategies that have been most effective, as well as the populations at greatest risk for future infection. This information might also be useful for targeted transmission-prevention interventions, including vaccine prioritisation. Our statistical approach to estimating SARS-CoV-2 infection allows estimates to be updated and disseminated rapidly on the basis of newly available data, which has and will be crucially important for timely COVID-19 research, science, and policy responses. Funding: Bill &amp; Melinda Gates Foundation, J Stanton, T Gillespie, and J and E Nordstrom

    Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: a statistical analysis

    No full text
    Timely, accurate, and comprehensive estimates of SARS-CoV-2 daily infection rates, cumulative infections, the proportion of the population that has been infected at least once, and the effective reproductive number (Reffective) are essential for understanding the determinants of past infection, current transmission patterns, and a population’s susceptibility to future infection with the same variant. Although several studies have estimated cumulative SARS-CoV-2 infections in select locations at specific points in time, all of these analyses have relied on biased data inputs that were not adequately corrected for. In this study, we aimed to provide a novel approach to estimating past SARS-CoV-2 daily infections, cumulative infections, and the proportion of the population infected, for 190 countries and territories from the start of the pandemic to Nov 14, 2021. This approach combines data from reported cases, reported deaths, excess deaths attributable to COVID-19, hospitalisations, and seroprevalence surveys to produce more robust estimates that minimise constituent biases
    corecore