17 research outputs found

    Hippocampal CA2 Activity Patterns Change over Time to a Larger Extent than between Spatial Contexts

    Get PDF
    SummaryThe hippocampal CA2 subregion has a different anatomical connectivity pattern within the entorhino-hippocampal circuit than either the CA1 or CA3 subregion. Yet major differences in the neuronal activity patterns of CA2 compared with the other CA subregions have not been reported. We show that standard spatial and temporal firing patterns of individual hippocampal principal neurons in behaving rats, such as place fields, theta modulation, and phase precession, are also present in CA2, but that the CA2 subregion differs substantially from the other CA subregions in its population coding. CA2 ensembles do not show a persistent code for space or for differences in context. Rather, CA2 activity patterns become progressively dissimilar over time periods of hours to days. The weak coding for a particular context is consistent with recent behavioral evidence that CA2 circuits preferentially support social, emotional, and temporal rather than spatial aspects of memory

    The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity.

    Get PDF
    The superficial layers of the medial entorhinal cortex (MEC) are a major input to the hippocampus. The high proportion of spatially modulated cells, including grid cells and border cells, in these layers suggests that MEC inputs are critical for the representation of space in the hippocampus. However, selective manipulations of the MEC do not completely abolish hippocampal spatial firing. To determine whether other hippocampal firing characteristics depend more critically on MEC inputs, we recorded from hippocampal CA1 cells in rats with MEC lesions. Theta phase precession was substantially disrupted, even during periods of stable spatial firing. Our findings indicate that MEC inputs to the hippocampus are required for the temporal organization of hippocampal firing patterns and suggest that cognitive functions that depend on precise neuronal sequences in the hippocampal theta cycle are particularly dependent on the MEC

    Reporting Guidelines and Issues to Consider for Using Intracranial Brain Stimulation in Studies of Human Declarative Memory

    Get PDF
    Participants with stimulating and recording electrodes implanted within the brain for clinical evaluation and treatment provide a rare opportunity to unravel the neuronal correlates of human memory, as well as offer potential for modulation of behavior. Recent intracranial stimulation studies of memory have been inconsistent in methodologies employed and reported conclusions, which renders generalizations and construction of a framework impossible. In an effort to unify future study efforts and enable larger meta-analyses we propose in this mini-review a set of guidelines to consider when pursuing intracranial stimulation studies of human declarative memory and summarize details reported by previous relevant studies. We present technical and safety issues to consider when undertaking such studies and a checklist for researchers and clinicians to use for guidance when reporting results, including targeting, placement, and localization of electrodes, behavioral task design, stimulation and electrophysiological recording methods, details of participants, and statistical analyses. We hope that, as research in invasive stimulation of human declarative memory further progresses, these reporting guidelines will aid in setting standards for multicenter studies, in comparison of findings across studies, and in study replications

    The Contributions of CA1, CA2, and CA3 to Hippocampal Coding for Temporal and Spatial Context

    No full text
    Memories for autobiographical events contain information not only about what happened, but also about when and where. The hippocampus is known to be critical for organizing autobiographical memories, yet little is known about how the temporal context of a memory is represented there, especially on the timescale of hours to days. We sought to elucidate the coding mechanisms used by the hippocampus to represent the spatio-temporal context of events. In our experimental paradigm, rats performed random foraging tasks twice a day for several days, as we conducted electrophysiological recordings in three subregions of the hippocampus, CA1, CA2, and CA3. By recording from the same cells for 30 or more hours, we were able to evaluate the impact of passing time on the representation of identical events in each of these subregions. We performed these experiments within two distinct arenas, allowing us to explore coding for spatial context in addition to temporal context. We found that the population of cells in CA3 showed robust coding for spatial context that was very stable for a period of at least 30 hours. Conversely, neuronal ensembles in CA2 were highly variable on the time scale of hours to days, with the change in time overshadowing change with spatial context. Finally, CA1, which receives input from each of these regions, showed a gradual change with time while also coding strongly for spatial context. These findings correspond well with theoretical predictions that time- stamped memories may be generated by combining a stable content signal with a time-varying temporal context signal. We thus propose that CA2 provides temporal context information to CA1, while CA3 provides stable information about space and spatial context, allowing CA1 to represent both types of information simultaneousl

    Reporting Guidelines and Issues to Consider for Using Intracranial Brain Stimulation in Studies of Human Declarative Memory

    No full text
    Participants with stimulating and recording electrodes implanted within the brain for clinical evaluation and treatment provide a rare opportunity to unravel the neuronal correlates of human memory, as well as offer potential for modulation of behavior. Recent intracranial stimulation studies of memory have been inconsistent in methodologies employed and reported conclusions, which renders generalizations and construction of a framework impossible. In an effort to unify future study efforts and enable larger meta-analyses we propose in this mini-review a set of guidelines to consider when pursuing intracranial stimulation studies of human declarative memory and summarize details reported by previous relevant studies. We present technical and safety issues to consider when undertaking such studies and a checklist for researchers and clinicians to use for guidance when reporting results, including targeting, placement, and localization of electrodes, behavioral task design, stimulation and electrophysiological recording methods, details of participants, and statistical analyses. We hope that, as research in invasive stimulation of human declarative memory further progresses, these reporting guidelines will aid in setting standards for multicenter studies, in comparison of findings across studies, and in study replications

    Recurrent Hippocampo-neocortical sleep-state divergence in humans

    No full text
    Sleep is assumed to be a unitary, global state in humans and most other animals that is coordinated by executive centers in the brain stem, hypothalamus, and basal forebrain. However, the common observation of unihemispheric sleep in birds and marine mammals, as well as the recently discovered nonpathological regional sleep in rodents, calls into question whether the whole human brain might also typically exhibit different states between brain areas at the same time. We analyzed sleep states independently from simultaneously recorded hippocampal depth electrodes and cortical scalp electrodes in eight human subjects who were implanted with depth electrodes for pharmacologically intractable epilepsy evaluation. We found that the neocortex and hippocampus could be in nonsimultaneous states, on average, one-third of the night and that the hippocampus often led in asynchronous state transitions. Nonsimultaneous bout lengths varied from 30 s to over 30 min. These results call into question the conclusions of studies, across phylogeny, that measure only surface cortical state but seek to assess the functions and drivers of sleep states throughout the brain
    corecore