36 research outputs found

    Inhibition of Rumen Methanogenesis and Ruminant Productivity: A Meta-Analysis

    Get PDF
    Methane (CH4) formed in the rumen and released to the atmosphere constitutes an energy inefficiency to ruminant production. Redirecting energy in CH4 to fermentation products with a nutritional value to the host animal could increase ruminant productivity and stimulate the adoption of CH4-suppressing strategies. The hypothesis of this research was that inhibiting CH4 formation in the rumen is associated with greater ruminant productivity. The primary objective of this meta-analysis was to evaluate how inhibiting rumen methanogenesis relates with the efficiencies of milk production and growth and fattening. A systematic review of peer-reviewed studies in which rumen methanogenesis was inhibited with chemical compounds was conducted. Experiments were clustered based on research center, year of publication, experimental design, feeding regime, type of animal, production response, inhibitor of CH4 production, and method of CH4 measurement. Response variables were regressed against the random experiment effect nested in its cluster, the random effect of the cluster, the linear and quadratic effects of CH4 production, and the random interaction between CH4 production and the experiment nested in the cluster. When applicable, responses were adjusted by intake of different nutrients included as regressors. Inhibiting rumen methanogenesis tended to associate positively with milk production efficiency, although the relationship was influenced by individual experiments. Likewise, a positive relationship between methanogenesis inhibition and growth and fattening efficiency depended on the inclusion and weighting of individual experiments. Inhibiting rumen methanogenesis negatively associated with dry matter intake. Interpretation of the effects of inhibiting methanogenesis on productivity is limited by the availability of experiments simultaneously reporting energy losses in feces, H2, urine and heat production, as well as net energy partition. It is concluded that inhibiting rumen methanogenesis has not consistently translated into greater animal productivity, and more animal performance experiments are necessary to better characterize the relationships between animal productivity and methanogenesis inhibition in the rumen. A more complete understanding of changes in the flows of nutrients caused by inhibiting rumen methanogenesis and their effect on intake also seems necessary to effectively re-channel energy gained from CH4 suppression toward consistent gains in productivity

    3-Nitrooxypropanol substantially decreased enteric methane emissions of dairy cows fed true protein- or urea-containing diets

    Get PDF
    Methane is a potent but short-lived greenhouse gas targeted for short-term amelioration of climate change, with enteric methane emitted by ruminants being the most important anthropogenic source of methane. Ruminant production also releases nitrogen to the environment, resulting in groundwater pollution and emissions of greenhouse gas nitrous oxide. We hypothesized that inhibiting rumen methanogenesis in dairy cows with chemical inhibitor 3-nitrooxypropanol (3-NOP) would redirect metabolic hydrogen towards synthesis of microbial amino acids. Our objective was to investigate the effects of 3-NOP on methane emissions, rumen fermentation and nitrogen metabolism of dairy cows fed true protein or urea as nitrogen sources. Eight ruminally-cannulated cows were fed a plant protein or a urea-containing diet during a Control experimental period followed by a methanogenesis inhibition period with 3-NOP supplementation. All diets were unintentionally deficient in nitrogen, and diets supplemented with 3-NOP had higher fiber than diets fed in the Control period. Higher dietary fiber content in the 3-NOP period would be expected to cause higher methane emissions; however, methane emissions adjusted by dry matter and digested organic matter intake were 54% lower with 3-NOP supplementation. Also, despite of the more fibrous diet, 3-NOP shifted rumen fermentation from acetate to propionate. The post-feeding rumen ammonium peak was substantially lower in the 3-NOP period, although that did not translate into greater rumen microbial protein production nor lesser nitrogen excretion in urine. Presumably, because all diets resulted in low rumen ammonium, and intake of digestible organic matter was lower in the 3-NOP period compared to the Control period, the synthesis of microbial amino acids was limited by nitrogen and energy, precluding the evaluation of our hypothesis. Supplementation with 3-NOP was highly effective at decreasing methane emissions with a lower quality diet, both with true protein and urea as nitrogen sources

    Snapshot of the Eukaryotic Gene Expression in Muskoxen Rumen—A Metatranscriptomic Approach

    Get PDF
    BACKGROUND: Herbivores rely on digestive tract lignocellulolytic microorganisms, including bacteria, fungi and protozoa, to derive energy and carbon from plant cell wall polysaccharides. Culture independent metagenomic studies have been used to reveal the genetic content of the bacterial species within gut microbiomes. However, the nature of the genes encoded by eukaryotic protozoa and fungi within these environments has not been explored using metagenomic or metatranscriptomic approaches. METHODOLOGY/PRINCIPAL FINDINGS: In this study, a metatranscriptomic approach was used to investigate the functional diversity of the eukaryotic microorganisms within the rumen of muskoxen (Ovibos moschatus), with a focus on plant cell wall degrading enzymes. Polyadenylated RNA (mRNA) was sequenced on the Illumina Genome Analyzer II system and 2.8 gigabases of sequences were obtained and 59129 contigs assembled. Plant cell wall degrading enzyme modules including glycoside hydrolases, carbohydrate esterases and polysaccharide lyases were identified from over 2500 contigs. These included a number of glycoside hydrolase family 6 (GH6), GH48 and swollenin modules, which have rarely been described in previous gut metagenomic studies. CONCLUSIONS/SIGNIFICANCE: The muskoxen rumen metatranscriptome demonstrates a much higher percentage of cellulase enzyme discovery and an 8.7x higher rate of total carbohydrate active enzyme discovery per gigabase of sequence than previous rumen metagenomes. This study provides a snapshot of eukaryotic gene expression in the muskoxen rumen, and identifies a number of candidate genes coding for potentially valuable lignocellulolytic enzymes

    Dilution rates experiment

    No full text
    Generated result

    Pronounced methanogenesis database

    No full text

    Opportunities and Hurdles to the Adoption and Enhanced Efficacy of Feed Additives towards Pronounced Mitigation of Enteric Methane Emissions from Ruminant Livestock

    No full text
    This paper analyzes the mitigation of enteric methane (CH4) emissions from ruminants with the use of feed additives inhibiting rumen methanogenesis to limit the global temperature increase to 1.5 °C. A mathematical simulation conducted herein predicted that pronounced inhibition of rumen methanogenesis with pure chemicals or bromoform-containing algae with an efficacy higher than that obtained in most studies can be important to limiting global temperature increase by 2050 to 1.5 °C but will likely need to be accompanied by improved production efficiency and other mitigation measures. Currently, the most important limitations to the adoption of antimethanogenic feed additives are increased feeding cost without a consistent return in production efficiency and achieving sustained delivery of inhibitors to grazing animals, especially in extensive systems. Economic incentives could be applied in some countries to favor adoption of inhibitors. Changes in rumen microbial and whole animal metabolism caused by inhibiting methanogenesis could potentially be used to make the methanogenesis inhibition intervention cost-effective, although research in this direction is unlikely to yield results in the short term. Future research directions to maximize the adoption and efficacy of inhibitors of methanogenesis are examined

    Prediction of enteric methane emissions and mitigation

    No full text
    Simulation considering inhibitors of methanogenesis decrease CH4 intensity by 26.6% for beef and lamb and 31.8% for bovine mil
    corecore