12 research outputs found

    Indicatori antropometrici dello stato nutrizionale: applicazione su un campione di soggetti in accrescimento dell'Ecuador

    No full text
    Dottorato di ricerca in auxologia e fisiopatologia della crescita. 8. ciclo. Coordinatore L. Gagliardi. Docente guida L. Benso. Correlatore E. CapucciConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Cuentos de amores

    No full text

    How Working Tasks Influence Biocontamination in an Animal Facility

    No full text
    The exposure to biocontaminants in animal facilities represents a risk for developing infectious, allergic and toxic diseases. The aim of this study was to determine what factors could be associated with a high level of exposure to biological agents through the measure and characterization of airborne fungi, bacteria, endotoxin, (1,3)-β-d-glucan and animal allergens. Airborne microorganisms were collected with an air sampler and identified by microscopic and biochemical methods. Endotoxin, (1,3)-β-d-glucan, Mus m 1, Rat n 1, Can f 1, Fel d 1, Equ c 4 allergens were detected on inhalable dust samples by Kinetic LAL, Glucatell, and ELISA assays, respectively. Our data evidenced that changing cages is a determinant factor in increasing the concentration of the airborne biocontaminants; the preparation of bedding and distribution of feed, performed in the storage area, is another critical working task in terms of exposure to endotoxins (210.7 EU/m3) and (1,3)-β-d-glucans (4.3 ng/m3). The highest concentration of Mus m 1 allergen (61.5 ng/m3) was observed in the dirty washing area. The detection of expositive peaks at risk of sensitization (>2 μg/g) by Fel d 1 in animal rooms shows passive transport by operators themselves, highlighting their role as vehicle between occupational and living environments

    A Pilot Study for <i>Legionella pneumophila</i> Volatilome Characterization Using a Gas Sensor Array and GC/MS Techniques

    No full text
    Legionellosis is a generic term describing the pneumonic (Legionnaires’ disease, LD) and non-pneumonic (Pontiac fever, PF) forms of infection with bacteria belonging to the genus Legionella. Currently, the techniques used to detect Legionella spp. in water samples have certain limitations and drawbacks, and thus, there is a need to identify new tools to carry out low-cost and rapid analysis. In this regard, several studies demonstrated that a volatolomics approach rapidly detects and discriminates different species of microorganisms via their volatile signature. In this paper, the volatile organic compounds (VOCs) pattern emitted in vitro by Legionella pneumophila cultures is characterized and compared to those produced by other Legionella species and by Pseudomonas aeruginosa, using a gas sensor array and gas chromatograph mass spectrometer (GC-MS). Bacterial cultures were measured at the 3rd and 7th day after the incubation. Sensor array data analyzed via the K-nearest neighbours (k-NN) algorithm showed a sensitivity to Legionella pneumophila identification at around 89%. On the other hand, GC-MS identified a bouquet of VOCs, mainly alcohols and ketones, that enable the differentiation of Legionella pneumophila in respect to other waterborne microorganisms

    A Pilot Study for Legionella pneumophila Volatilome Characterization Using a Gas Sensor Array and GC/MS Techniques

    No full text
    Legionellosis is a generic term describing the pneumonic (Legionnaires&rsquo; disease, LD) and non-pneumonic (Pontiac fever, PF) forms of infection with bacteria belonging to the genus Legionella. Currently, the techniques used to detect Legionella spp. in water samples have certain limitations and drawbacks, and thus, there is a need to identify new tools to carry out low-cost and rapid analysis. In this regard, several studies demonstrated that a volatolomics approach rapidly detects and discriminates different species of microorganisms via their volatile signature. In this paper, the volatile organic compounds (VOCs) pattern emitted in vitro by Legionella pneumophila cultures is characterized and compared to those produced by other Legionella species and by Pseudomonas aeruginosa, using a gas sensor array and gas chromatograph mass spectrometer (GC-MS). Bacterial cultures were measured at the 3rd and 7th day after the incubation. Sensor array data analyzed via the K-nearest neighbours (k-NN) algorithm showed a sensitivity to Legionella pneumophila identification at around 89%. On the other hand, GC-MS identified a bouquet of VOCs, mainly alcohols and ketones, that enable the differentiation of Legionella pneumophila in respect to other waterborne microorganisms

    Mapping Biological Risks Related to Necropsy Activities: Old Concerns and Novel Issues for the Safety of Health Professionals

    No full text
    Nowadays only a few studies on biological and environmental risk among healthcare workers are available in literature. The present study aims to assess the health operator’s risk of contact with microorganisms during necropsy activities, to evaluate the efficiency of current protections, to identify possible new sources of contact, and to point out possible preventive measures. In addition, considering the current pandemic scenario, the risk of transmission of SARS-CoV-2 infection in the dissection room is assessed. The objectives were pursued through two distinct monitoring campaigns carried out in different periods through sampling performed both on the corpses and at the environmental level

    Mapping Biological Risks Related to Necropsy Activities: Old Concerns and Novel Issues for the Safety of Health Professionals

    Get PDF
    Nowadays only a few studies on biological and environmental risk among healthcare workers are available in literature. The present study aims to assess the health operator's risk of contact with microorganisms during necropsy activities, to evaluate the efficiency of current protections, to identify possible new sources of contact, and to point out possible preventive measures. In addition, considering the current pandemic scenario, the risk of transmission of SARS-CoV-2 infection in the dissection room is assessed. The objectives were pursued through two distinct monitoring campaigns carried out in different periods through sampling performed both on the corpses and at the environmental level
    corecore