4 research outputs found

    Graphene-Coated PVDF Membranes: Effects of Multi-Scale Rough Structure on Membrane Distillation Performance

    No full text
    Graphene-coated membranes for membrane distillation have been fabricated by using a wet-filtration approach. Graphene nanoplatelets have been deposited onto PVDF membrane surfaces. Morphology and physicochemical properties have been explored to evaluate the changes in the surface topography and related effects on the membrane performance in water desalination. The membranes have been tested in membrane distillation plants by using mixtures of sodium chloride and humic acid. The multi-scale rough structure of the surface has been envisaged to amplify the wetting and fouling resistance of the graphene-coated membranes so that a better flux and full salt rejection have been achieved in comparison with pristine PVDF. Total salt rejection and an increase of 77% in flux have been observed for coated membrane with optimized graphene content when worked with NaCl 0.6 M (DCMD, ΔT ≈ 24 °C) over a test period of 6 h. The experimental findings suggest these novel graphene-coated membranes as promising materials to develop functional membranes for high-performing water desalination

    Biomass-Derived Nitrogen Functionalized Carbon Nanodots and Their Anti-Biofouling Properties

    No full text
    The prevalence of the antibiotic resistant bacteria remains a global issue. Cheap, sustainable and multifunctional antibacterial membranes are at the forefront of filtrating materials capable of treating multiple flow streams, such as water cleansing treatments. Carbon nanomaterials are particularly interesting objects shown to enhance antibacterial properties of composite materials. In this article, amino-functionalized, photoluminescent carbon nanodots (CNDs) were synthesized from chitosan by bottom-up approach via simple and green hydrothermal carbonization. A chemical model for the CNDs formation during hydrothermal treatment of chitosan is proposed. The use of urea as an additional nitrogen source leads to the consumption of hydroxyl groups of chitosan and higher nitrogen doping level as pyridinic and pyrrolic N-bonding configurations in the final carbonaceous composition. These functionalized carbon nanodots that consist of carbon core and various surface functional groups were used to modify the commercially available membranes in order to enhance their anti-biofouling properties and add possible functionalities, including fluorescent labelling. Incorporation of CNDs to membranes increased their hydrophilicity, surface charge without compromising membranes integrity, thereby increasing the factors affecting bacterial wall disruption. Membranes modified with CNDs effectively stopped the growth of two Gram-negative bacterial colonies: Klebsiella oxytoca (K. oxytoca) and Pseudomonas aeruginosa (P. aeruginosa)

    Characterization of PVDF/Graphene Nanocomposite Membranes for Water Desalination with Enhanced Antifungal Activity

    No full text
    Seawater desalination is a worldwide concern for the sustainable production of drinking water. In this regard, membrane distillation (MD) has shown the potential for effective brine treatment. However, the lack of appropriate MD membranes limits its industrial expansion since they experience fouling and wetting issues. Therefore, hydrophobic membranes are promising candidates to successfully deal with such phenomena that are typical for commercially available membranes. Here, several graphene/polyvinylidene (PVDF_G) membranes with different graphene loading (0–10 wt%) were prepared through a phase inversion method. After full characterization of the resulting membranes, the surface revealed that the well-dispersed graphene in the polymer matrix (0.33 and 0.5 wt% graphene loading) led to excellent water repellence together with a rough structure, and a large effective surface area. Importantly, antifungal activity tests of films indicated an increase in the inhibition percentage for PVDF_G membranes against the Curvularia sp. fungal strain. However, the antifungal surface properties were found to be the synergistic result of graphene toxicity and surface topography
    corecore