15 research outputs found

    Serum-Activated K and Cl Currents Underlay U87-MG Glioblastoma Cell Migration

    Get PDF
    Glioblastoma cells in vivo are exposed to a variety of promigratory signals, including undefined serum components that infiltrate into high grade gliomas as result of blood-brain barrier breakdown. Glioblastoma cell migration has been further shown to depend heavily on ion channels activity. We have then investigated the modulatory effects of fetal calf serum (FCS) on ion channels, and their involvement in U87-MG cells migration. Using the perforated patch-clamp technique we have found that, in a subpopulation of cells (42%), FCS induced: (1) an oscillatory activity of TRAM-34 sensitive, intermediate-conductance calcium-activated K (IK(Ca)) channels, mediated by calcium oscillations previously shown to be induced by FCS in this cell line; (2) a stable activation of a DIDS- and NPPB-sensitive Cl current displaying an outward rectifying instantaneous current-voltage relationship and a slow, voltage-dependent inactivation. By contrast, in another subpopulation of cells (32%) FCS induced a single, transient IK(Ca) current activation, always accompanied by a stable activation of the Cl current. The remaining cells did not respond to FCS. In order to understand whether the FCS-induced ion channel activities are instrumental to promoting cell migration, we tested the effects of TRAM-34 and DIDS on the FCS-induced U87-MG cell migration using transwell migration assays. We found that these inhibitors were able to markedly reduce U87-MG cell migration in the presence of FCS, and that their co-application resulted in an almost complete arrest of migration. It is concluded that the modulation of K and Cl ion fluxes is essential for the FCS-induced glioblastoma cell migration. J. Cell. Physiol. 226: 1926-1933, 2011. (C) 2010 Wiley-Liss, Inc

    Expression and Modulation of the Intermediate- Conductance Ca2+-Activated K+ Channel in Glioblastoma GL-15 Cells

    Get PDF
    We report here the expression and properties of the intermediate-conductance Ca2+-activated K+ (IKCa) channel in the GL-15 human glioblastoma cell line. Macroscopi

    The energy blockers bromopyruvate and lonidamine lead GL15 glioblastoma cells to death by different p53-dependent routes

    No full text
    The energy metabolism of tumor cells relies on aerobic glycolysis rather than mitochondrial oxidation. This difference between normal and cancer cells provides a biochemical basis for new therapeutic strategies aimed to block the energy power plants of cells. The effects produced by the energy blockers bromopyruvate (3BP) and lonidamine (LND) and the underlying biochemical mechanisms were investigated in GL15 glioblastoma cells. 3BP exerts early effects compared to LND, even though both drugs lead cells to death but by different routes. A dramatic decrease of ATP levels occurred after 1 hour treatment with 3BP, followed by cytochrome c and hexokinase II degradation, and by the decrease of both LC3I/LC3II ratio and p62, markers of an autophagic flux. In addition, Akt(Ser 473) and p53(Ser 15 /Ser 315) dephosphorylation occurred. In LND treatment, sustained ATP cellular levels were maintained up to 40 hours. The autophagic response of cells was overcome by apoptosis that was preceded by phosphatidylinositol disappearance and pAkt decrease. This last event favored p53 translocation to mitochondria triggering a p53-dependent apoptotic route, as observed at 48 and 72 hours. Adversely, in 3BP treatment, phospho-p53 dephosphorylation targeted p53 to MDM2-dependent proteolysis, thus channeling cells to irreversible autophagy

    M2 Muscarinic Receptor Activation Impairs Mitotic Progression and Bipolar Mitotic Spindle Formation in Human Glioblastoma Cell Lines

    No full text
    Background: Glioblastoma multiforme (GBM) is characterized by several genetic abnormalities, leading to cell cycle deregulation and abnormal mitosis caused by a defective checkpoint. We previously demonstrated that arecaidine propargyl ester (APE), an orthosteric agonist of M2 muscarinic acetylcholine receptors (mAChRs), arrests the cell cycle of glioblastoma (GB) cells, reducing their survival. The aim of this work was to better characterize the molecular mechanisms responsible for this cell cycle arrest. Methods: The arrest of cell proliferation was evaluated by flow cytometry analysis. Using immunocytochemistry and time-lapse analysis, the percentage of abnormal mitosis and aberrant mitotic spindles were assessed in both cell lines. Western blot analysis was used to evaluate the modulation of Sirtuin2 and acetylated tubulin—factors involved in the control of cell cycle progression. Results: APE treatment caused arrest in the M phase, as indicated by the increase in p-HH3 (ser10)-positive cells. By immunocytochemistry, we found a significant increase in abnormal mitoses and multipolar mitotic spindle formation after APE treatment. Time-lapse analysis confirmed that the APE-treated GB cells were unable to correctly complete the mitosis. The modulated expression of SIRT2 and acetylated tubulin in APE-treated cells provides new insights into the mechanisms of altered mitotic progression in both GB cell lines. Conclusions: Our data show that the M2 agonist increases aberrant mitosis in GB cell lines. These results strengthen the idea of considering M2 acetylcholine receptors a novel promising therapeutic target for the glioblastoma treatment

    M2 receptor activation inhibits cell cycle progression and survival in human glioblastoma cells

    No full text
    Muscarinic receptors, expressed in several primary and metastatic tumours, appear to be implicated in their growth and propagation. In this work we have demonstrated that M2 muscarinic receptors are expressed in glioblastoma human specimens and in glioblastoma cell lines. Moreover, we have characterized the effects of the M2 agonist arecaidine on cell growth and survival both in two different glioblastoma cell lines (U251MG and U87MG) and in primary cultures obtained from different human biopsies. Cell growth analysis has demonstrated that the M2 agonist arecaidine strongly decreased cell proliferation in both glioma cell lines and primary cultures. This effect was dose and time dependent. FACS analysis has confirmed cell cycle arrest at G1/S and at G2/M phase in U87 cells and U251 respectively. Cell viability analysis has also shown that arecaidine induced severe apoptosis, especially in U251 cells. Chemosensitivity assays have, moreover, shown arecaidine and temozolomide similar effects on glioma cell lines, although IC50 value for arecaidine was significantly lower than temozolomide. In conclusion, we report for the first time that M2 receptor activation has a relevant role in the inhibition of glioma cell growth and survival, suggesting that M2 may be a new interesting therapeutic target to investigate for glioblastoma therapy. © 2013

    Functional cross talk between CXCR4 and PDGFR on glioblastoma cells is essential for migration.

    Get PDF
    Glioblastoma (GBM) is the most common and aggressive form of brain tumor, characterized by high migratory behavior and infiltration in brain parenchyma which render classic therapeutic approach ineffective. The migratory behaviour of GBM cells could be conditioned by a number of tissue- and glioma-derived cytokines and growth factors. Although the pro-migratory action of CXCL12 on GBM cells in vitro and in vivo is recognized, the molecular mechanisms involved are not clearly identified. In fact the signaling pathways involved in the pro-migratory action of CXCL12 may differ in individual glioblastoma and integrate with those resulting from abnormal expression and activation of growth factor receptors. In this study we investigated whether some of the receptor tyrosine kinases commonly expressed in GBM cells could cooperate with CXCL12/CXCR4 in their migratory behavior. Our results show a functional cross-talk between CXCR4 and PDGFR which appears to be essential for GBM chemotaxis

    Functional Cross Talk between CXCR4 and PDGFR on Glioblastoma Cells Is Essential for Migration

    Get PDF
    <div><p>Glioblastoma (GBM) is the most common and aggressive form of brain tumor, characterized by high migratory behavior and infiltration in brain parenchyma which render classic therapeutic approach ineffective. The migratory behaviour of GBM cells could be conditioned by a number of tissue- and glioma-derived cytokines and growth factors. Although the pro-migratory action of CXCL12 on GBM cells in vitro and in vivo is recognized, the molecular mechanisms involved are not clearly identified. In fact the signaling pathways involved in the pro-migratory action of CXCL12 may differ in individual glioblastoma and integrate with those resulting from abnormal expression and activation of growth factor receptors. In this study we investigated whether some of the receptor tyrosine kinases commonly expressed in GBM cells could cooperate with CXCL12/CXCR4 in their migratory behavior. Our results show a functional cross-talk between CXCR4 and PDGFR which appears to be essential for GBM chemotaxis.</p> </div
    corecore