15 research outputs found

    Increasing Incidence of Geomyces destructans Fungus in Bats from the Czech Republic and Slovakia

    Get PDF
    BACKGROUND: White-nose syndrome is a disease of hibernating insectivorous bats associated with the fungus Geomyces destructans. It first appeared in North America in 2006, where over a million bats died since then. In Europe, G. destructans was first identified in France in 2009. Its distribution, infection dynamics, and effects on hibernating bats in Europe are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We screened hibernacula in the Czech Republic and Slovakia for the presence of the fungus during the winter seasons of 2008/2009 and 2009/2010. In winter 2009/2010, we found infected bats in 76 out of 98 surveyed sites, in which the majority had been previously negative. A photographic record of over 6000 hibernating bats, taken since 1994, revealed bats with fungal growths since 1995; however, the incidence of such bats increased in Myotis myotis from 2% in 2007 to 14% by 2010. Microscopic, cultivation and molecular genetic evaluations confirmed the identity of the recently sampled fungus as G. destructans, and demonstrated its continuous distribution in the studied area. At the end of the hibernation season we recorded pathologic changes in the skin of the affected bats, from which the fungus was isolated. We registered no mass mortality caused by the fungus, and the recorded population decline in the last two years of the most affected species, M. myotis, is within the population trend prediction interval. CONCLUSIONS/SIGNIFICANCE: G. destructans was found to be widespread in the Czech Republic and Slovakia, with an epizootic incidence in bats during the most recent years. Further development of the situation urgently requires a detailed pan-European monitoring scheme

    Barn Owl Productivity Response to Variability of Vole Populations.

    No full text
    We studied the response of the barn owl annual productivity to the common vole population numbers and variability to test the effects of environmental stochasticity on their life histories. Current theory predicts that temporal environmental variability can affect long-term nonlinear responses (e.g., production of young) both positively and negatively, depending on the shape of the relationship between the response and environmental variables. At the level of the Czech Republic, we examined the shape of the relationship between the annual sum of fledglings (annual productivity) and vole numbers in both non-detrended and detrended data. At the districts' level, we explored whether the degree of synchrony (measured by the correlation coefficient) and the strength of the productivity response increase (measured by the regression coefficient) in areas with higher vole population variability measured by the s-index. We found that the owls' annual productivity increased linearly with vole numbers in the Czech Republic. Furthermore, based on district data, we also found that synchrony between dynamics in owls' reproductive output and vole numbers increased with vole population variability. However, the strength of the response was not affected by the vole population variability. Additionally, we have shown that detrending remarkably increases the Taylor's exponent b relating variance to mean in vole time series, thereby reversing the relationship between the coefficient of variation and the mean. This shift was not responsible for the increased synchrony with vole population variability. Instead, we suggest that higher synchrony could result from high food specialization of owls on the common vole in areas with highly fluctuating vole populations

    Management of the Common Vole in the Czech Lands: Historical and Current Perspectives

    No full text
    The integrated management of a serious agricultural pest, the common vole (Microtus arvalis), should be based on modern and empirically proven approaches. The aim of this paper was to map the historical development of the monitoring and control practices of the common vole in the Czech Republic (CR) territory. Published records of vole population outbreaks and heavy crop damage have been documented in the Czech literature since the turn of the 20th century, and even in crops planted in highly fragmented and diversified agricultural landscapes. In the CR, systematic state monitoring was introduced in 1955. In the 1930’s, there were more than 100 various rodent preparations against the common vole, which were formulated as smoke generators, gases, baits, dusts, toxic mushy mass, and insecticide sprays. Currently, there are only six preparations with three active ingredients registered in the CR. Zinc phosphide is the only active ingredient that has been used from the 1940s to the present, whereas anticoagulants were banned for vole control in 2011 owing to the high environmental risks. The poisoning of nontarget animals by rodenticides is not a new phenomenon tied to synthetic pesticides; poisoning by botanical extracts (strychnine) was documented more than 100 years ago. This review may provide both historical lessons for current practice and new incentives for future research

    Comparison of microleakage under orthodontic brackets bonded with five different adhesive systems: in vitro study

    No full text
    Abstract Background Orthodontic treatment is associated with numerous adverse side effects, such as enamel discoloration, demineralization or even caries. The presence of microleakage between the enamel and the adhesive and between the adhesive and the base of the orthodontic bracket allows penetration of the bacteria, molecules, and liquids into the enamel and can lead to unpleasant “white spot lesions” or secondary caries beneath and around the brackets. The aim of this in vitro study was to evaluate microleakage in five adhesive systems commonly used in orthodontic practice for bonding brackets. Methods One hundred extracted premolars were divided into five groups of twenty teeth. Stainless steel Legend medium metal brackets were bonded to teeth using five adhesive systems: resin-reinforced glass ionomer cement GC Fuji Ortho LC (GCF) and composite materials Light Bond (LB), Transbond XT (TB), Trulock™ Light Activated Adhesive (TL), and GC Ortho Connect (GCO). The specimens were subjected to thermal cycling, stained with 2% methylene blue, sectioned with low–speed diamond saw Isomet and evaluated under a digital microscope. Microleakage was detected at the enamel-adhesive and adhesive-bracket interfaces from occlusal and gingival margins. Statistical analysis was performed using generalized linear mixed models with beta error distribution. Results Microleakage was observed in all materials, with GCF showing the highest amount of microleakage. Composite materials GCO, TB, and LB exhibited the lowest amount of microleakage with no statistical difference between them, while TL showed a statistically significantly higher amount of microleakage (p < 0.001). The enamel–adhesive interface had more microleakage in all composite materials (GCO, LB, TB, and TL) than the adhesive bracket–interface (p < 0.001). The highest amount of microleakage occurred in the gingival region in all materials. Conclusion Composite materials showed better adhesive properties than a resin-reinforced glass ionomer cement. The presence of microleakage at the enamel-adhesive interface facilitates the penetration of various substances into enamel surfaces, causing enamel demineralization and the development of dental caries

    The relationship between barn owl productivity responses and vole population variability in ten districts of the Czech Republic.

    No full text
    <p>The upper panels show the degree of synchrony between the barn owl productivity and vole population variability using the non-detrending (a) and detrending approach (b). The lower panels show the strength of the productivity response to vole population variability without detrending (c) and with detrending (d). The dashed lines indicate 95% confidence intervals for the regression line.</p

    The Taylor’s power law relationships for the vole time series data.

    No full text
    <p>The upper panels show the relationship between variance and mean for non-detrended (a) and detrended (b) data. The lower panels show the relationship between the coefficients of variation (CV) and mean for non-detrended (c) and detrended (d) vole data.</p

    The relationship between barn owl productivity responses and autumn vole index using non-detrended (a, c) and detrended (b, d) time series, based on the data from the whole Czech Republic.

    No full text
    <p>The barn owl responded to the increased vole population densities by increasing the mean number of clutches per site (a, b) and the mean number of fledglings per site (c, d). The regression was weighted by reciprocals of variance for annual means of owl productivity. The dashed lines indicate 95% confidence intervals for the regression line.</p

    (a) Map of the districts in the Czech Republic showing the distribution of barn owl nesting sites and (b) the dynamics of barn owl productivity (solid lines) and the common vole numbers (dashed line) in autumn during the period 1998–2013.

    No full text
    <p>The shaded areas in (a) indicate the 10 districts used in the analysis of vole population variability effects on the strength of the responses in the barn owl productivity parameters. Barn owl productivity was measured as the annual number of successfully produced fledglings (solid line). Vole numbers were measured by a vole index based on the number of active burrow entrances per hectare.</p
    corecore