23 research outputs found

    Application of best estimate plus uncertainty in review of research reactor safety analysis

    Get PDF
    To construct and operate a nuclear research reactor, the licensee is required to obtain the authorization from the regulatory body. One of the tasks of the regulatory authority is to verify that the safety analysis fulfils safety requirements. Historically, the compliance with safety requirements was assessed using a deterministic approach and conservative assumptions. This provides sufficient safety margins with respect to the licensing limits on boundary and operational conditions. Conservative assumptions were introduced into safety analysis to account for the uncertainty associated with lack of knowledge. With the introduction of best estimate computational tools, safety analyses are usually carried out using the best estimate approach. Results of such analyses can be accepted by the regulatory authority only if appropriate uncertainty evaluation is carried out. Best estimate computer codes are capable of providing more realistic information on the status of the plant, allowing the prediction of real safety margins. The best estimate plus uncertainty approach has proven to be reliable and viable of supplying realistic results if all conditions are carefully followed. This paper, therefore, presents this concept and its possible application to research reactor safety analysis. The aim of the paper is to investigate the unprotected loss-of-flow transients "core blockage" of a miniature neutron source research reactor by applying best estimate plus uncertainty methodology. The results of our calculations show that the temperatures in the core are within the safety limits and do not pose any significant threat to the reactor, as far as the melting of the cladding is concerned. The work also discusses the methodology of the best estimate plus uncertainty approach when applied to the safety analysis of research reactors for licensing purposes

    Calibration and Performance Testing of Sodium Iodide, NaI (Tl), Detector at the Food and Environmental Laboratory of the Radiation Protection Institute of the Ghana Atomic Energy Commission

    Get PDF
    The performance testing of a newly acquired sodium iodide detector (NaI), (Tl)) at Ghana Atomic Energy Commission (GAEC) was investigated by carrying out energy and efficiency calibration on the detector, as well as validation of its calibration. The energy and efficiency calibrations were performed using mixed radionuclides 241 109 57 137 60 standard containing Am, Cd, Co, Cs and Co in the energy range of 60–1333 keV. The energy and efficiency calibration curves obtained compare well with what is available in the literature. Results of the validation of the calibration showed that there were no significance differences between the measured and the calculated activities of the standard radionuclides with activity ratios in the range of 0.90-0.98 and the corresponding percentage deviation in a range of 1.43–10.47%. The average MDA of 238U, 232Th, 40K and 137Cs from background counting rates were estimated to be 0.099 ± 0.055 Bq, 0.061 ± 0.037 Bq, 0.727 ± 0.300 Bq and 0.014 ± 0.006 Bq, respectively

    Artificial and Natural Radioactivity Measurements and Radiation Dose Assessment in the Vicinity of Ghana Nuclear Research Reactor-1 (GHARR-1)

    Get PDF
    Radioactivity concentrations of <sup>226</sup>Ra, <sup>232</sup>Th, <sup>40</sup>K and <sup>137</sup>Cs in soil samples and water sources around the Ghana Research Reactor-1 (GHARR-1) and the immediate surroundings have been measured using gamma spectrometry. The primary aim of the study was to establish baseline radioactivity levels in the environs of GHARR-1. The average activity concentration of <sup>226</sup>Ra, <sup>232</sup>Th, <sup>40</sup>K and <sup>137</sup>Cs were 22.3 ± 1.12 Bq kg<sup>-1</sup>, 49.8 ± 1.60Bq kg-1, 99.60 ± 5.81 Bq kg<sup>-1</sup> and 1.48 ± 0.25 Bq kg<sup>-1</sup> for soil and 0.60 ± 0.11 Bq l<sup>-1</sup>, 2.13 ± 0.21 Bq l<sup>-1</sup>, 10.75 ± 0.84 Bq l<sup>-1</sup> and 0.47 ± 0.05 Bq l<sup>-1</sup>for the water, respectively. The <sup>226</sup>Ra and <sup>232</sup>Th concentrations compare quite well with world averages, whilst the <sup>40</sup>K concentration was lower than the world average. The levels of <sup>137</sup>Cs observed in the samples are within the range of ‘background’  concentrations. The estimated average annual effective doses from external exposure to soil and ingestion of water samples were calculated to be 0.06 mSv and 0.53 mSv, respectively. The estimated outdoor  external gamma dose rate measured in air ranged from 20-430 nGy h<sup>-1</sup> with an average value of 100 nGy h<sup>-1</sup>, which is higher than the world average value of 59 nGy h<sup>-1</sup>. In the case of water samples, the average value was higher than the guidance level of 0.1 mSv y<sup>-1</sup>, as recommended by the European Union and the World Health Organization

    Global surgery, obstetric, and anaesthesia indicator definitions and reporting: An Utstein consensus report

    Get PDF
    Background Indicators to evaluate progress towards timely access to safe surgical, anaesthesia, and obstetric (SAO) care were proposed in 2015 by the Lancet Commission on Global Surgery. These aimed to capture access to surgery, surgical workforce, surgical volume, perioperative mortality rate, and catastrophic and impoverishing financial consequences of surgery. Despite being rapidly taken up by practitioners, data points from which to derive the indicators were not defined, limiting comparability across time or settings. We convened global experts to evaluate and explicitly define—for the first time—the indicators to improve comparability and support achievement of 2030 goals to improve access to safe affordable surgical and anaesthesia care globally. Methods and findings The Utstein process for developing and reporting guidelines through a consensus building process was followed. In-person discussions at a 2-day meeting were followed by an iterative process conducted by email and virtual group meetings until consensus was reached. The meeting was held between June 16 to 18, 2019; discussions continued until August 2020. Participants consisted of experts in surgery, anaesthesia, and obstetric care, data science, and health indicators from high-, middle-, and low-income countries. Considering each of the 6 indicators in turn, we refined overarching descriptions and agreed upon data points needed for construction of each indicator at current time (basic data points), and as each evolves over 2 to 5 (intermediate) and >5 year (full) time frames. We removed one of the original 6 indicators (one of 2 financial risk protection indicators was eliminated) and refined descriptions and defined data points required to construct the 5 remaining indicators: geospatial access, workforce, surgical volume, perioperative mortality, and catastrophic expenditure. A strength of the process was the number of people from global institutes and multilateral agencies involved in the collection and reporting of global health metrics; a limitation was the limited number of participants from low- or middle-income countries—who only made up 21% of the total attendees. Conclusions To track global progress towards timely access to quality SAO care, these indicators—at the basic level—should be implemented universally as soon as possible. Intermediate and full indicator sets should be achieved by all countries over time. Meanwhile, these evolutions can assist in the short term in developing national surgical plans and collecting more detailed data for research studies.publishedVersio

    A theoretical and experimental dose rate study at a multipurpose gamma irradiation facility in Ghana

    No full text
    No Abstract. Journal of the Ghana Association Vol. 2 (3) 1999: pp.12-1

    Pre-commisioning dosimetry at the radiation technology centre (RTC), Kwabenya

    No full text
    No Abstract. Journal of the Ghana Association Vol. 2 (3) 1999: pp.143-14

    Neutron Activation Analysis of Chitin And Chitosan Extracted From Local Sea Crab Shells

    No full text
    Multielemental determinations in Chitin and Chitosan powders extracted from exoskeletons of local crab shells using Instrumental Neutron Activation Analysis (INAA) technique are reported. The samples were initially irradiated in a neutron thermal flux of 5 x 1011 n.cm-2s-1 in the 30kW Miniature Neutron Source Reactor (MNSR) at the Ghana Atomic Energy Commission (GAEC).Using a combination of short, medium and long irradiation schemes, fourteen elements were identified and quantified of which twelve (Al, Ca, Cl, Mg, Mn, Co, Cr, Cs, Eu, Fe, Sb, and Sc) were common to both samples. The study shows that these samples are rich sources of minor and major elements important for nutrition and growth in both plants and animals. Journal of the Ghana Science Association Vol. 9 (2) 2007: pp. 38-4

    Radiation Processing And Characterization Of Chitin And Chitosan Extracted From Crab Shells

    No full text
    The extraction and characterization of Chitin and Chitosan from crab shells (Callinectes sp.) obtained locally in Ghana is presented. The shells were finely milled and soaked in 10 % dilute hydrochloric acid (HCl) for 48 hr followed by de-proteinization using 2M sodium hydroxide (NaOH) solution for 24 hr to obtain Chitin. The Chitin was refluxed at 100 oC in 50 % NaOH for 7 hr to yield Chitosan. The Chitin and Chitosan were characterized by determining the de-acetylation, viscosity and average molecular weights. The degree of de-acetylation was determined to be 89.7 %. The viscosity of Chitosan in dilute acetic acid was measured and the average molecular weight estimated. The average molecular weight of dry gamma irradiated (up to 100kGy) Chitosan samples decreased with increasing dose. The results have been discussed in terms of radiation induced degradation of solids. Journal of the Ghana Science Association Vol. 9 (2) 2007: pp. 18-2
    corecore