16,104 research outputs found

    Local Electronic Structure and High Temperature Superconductivity

    Full text link
    It is argued that a new mechanism and many-body theory of superconductivity are required for doped correlated insulators. Here we review the essential features of and the experimental support for such a theory, in which the physics is driven by the kinetic energy.Comment: 8 Pages Latex. For the Proceedings of HTS99, Miami, FL, Jan. 199

    Stripe phases in high-temperature superconductors

    Full text link
    Stripe phases are predicted and observed to occur in a class of strongly-correlated materials describable as doped antiferromagnets, of which the copper-oxide superconductors are the most prominent representative. The existence of stripe correlations necessitates the development of new principles for describing charge transport, and especially superconductivity, in these materials.Comment: 5 pp, 1 color eps fig., to appear as a Perspective in Proc. Natl. Acad. Sci. US

    A comparison of the finite difference and finite element methods for heat transfer calculations

    Get PDF
    The finite difference method and finite element method for heat transfer calculations are compared by describing their bases and their application to some common heat transfer problems. In general it is noted that neither method is clearly superior, and in many instances, the choice is quite arbitrary and depends more upon the codes available and upon the personal preference of the analyst than upon any well defined advantages of one method. Classes of problems for which one method or the other is better suited are defined

    Enhancement of pairing in a boson-fermion model for coupled ladders

    Full text link
    Motivated by the presence of various charge inhomogeneities in strongly correlated systems of coupled ladders, a model of spatially separated bosonic and fermionic degrees of freedom is numerically studied. In this model, bosonic chains are connected to fermionic chains by two types of generalized Andreev couplings. It is shown that for both types of couplings the long-distance pairing correlations are enhanced. Near quarter filling, this effect is much larger for the splitting of a pair in electrons which go to the two neighboring fermionic chains than for a pair hopping process. It is argued that the pairing enhancement is a result of the nearest neighbor Coulomb repulsion which tunes the competition between pairing and charge ordering.Comment: 7 pages, 7 eps figures, enlarged version accpeted in Phys. Rev.

    The three-dimensional BF Model with Cosmological Term in the Axial Gauge

    Get PDF
    We quantize the three-dimensional BFBF-model using axial gauge conditions. Exploiting the rich symmetry-structure of the model we show that the Green-functions correspond to tree graphs and can be obtained as the unique solution of the Ward-Identities. Furthermore, we will show that the theory can be uniquely determined by symmetry considerations without the need of an action principle.Comment: one reference added, transmission errors correcte

    Landau theory of phase separation in cuprates

    Full text link
    I discuss the problem of phase separation in cuprates from the point of view of the Landau theory of Fermi liquids. I calculate the rate of growth of unstable regions for the hydrodymanics and collisionless limit and, in presence of long range Coulomb interactions, the size of these regions. These are analytic results valid for any strength of the Landau parameters.Comment: RevteX, preprint ITP (1994
    • …
    corecore