6,024 research outputs found

    Characterization of complex quantum dynamics with a scalable NMR information processor

    Get PDF
    We present experimental results on the measurement of fidelity decay under contrasting system dynamics using a nuclear magnetic resonance quantum information processor. The measurements were performed by implementing a scalable circuit in the model of deterministic quantum computation with only one quantum bit. The results show measurable differences between regular and complex behaviour and for complex dynamics are faithful to the expected theoretical decay rate. Moreover, we illustrate how the experimental method can be seen as an efficient way for either extracting coarse-grained information about the dynamics of a large system, or measuring the decoherence rate from engineered environments.Comment: 4pages, 3 figures, revtex4, updated with version closer to that publishe

    Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking

    Full text link
    One technique to reduce the state-space explosion problem in temporal logic model checking is symmetry reduction. The combination of symmetry reduction and symbolic model checking by using BDDs suffered a long time from the prohibitively large BDD for the orbit relation. Dynamic symmetry reduction calculates representatives of equivalence classes of states dynamically and thus avoids the construction of the orbit relation. In this paper, we present a new efficient model checking algorithm based on dynamic symmetry reduction. Our experiments show that the algorithm is very fast and allows the verification of larger systems. We additionally implemented the use of state symmetries for symbolic symmetry reduction. To our knowledge we are the first who investigated state symmetries in combination with BDD based symbolic model checking

    Symmetrised Characterisation of Noisy Quantum Processes

    Full text link
    A major goal of developing high-precision control of many-body quantum systems is to realise their potential as quantum computers. Probably the most significant obstacle in this direction is the problem of "decoherence": the extreme fragility of quantum systems to environmental noise and other control limitations. The theory of fault-tolerant quantum error correction has shown that quantum computation is possible even in the presence of decoherence provided that the noise affecting the quantum system satisfies certain well-defined theoretical conditions. However, existing methods for noise characterisation have become intractable already for the systems that are controlled in today's labs. In this paper we introduce a technique based on symmetrisation that enables direct experimental characterisation of key properties of the decoherence affecting a multi-body quantum system. Our method reduces the number of experiments required by existing methods from exponential to polynomial in the number of subsystems. We demonstrate the application of this technique to the optimisation of control over nuclear spins in the solid state.Comment: About 12 pages, 5 figure

    Characterization of solar-grade silicon produced by the SiF4-Na process

    Get PDF
    A process was developed for producing low cost solar grade silicon by the reaction between SiF4 gas and sodium metal. The results of the characterization of the silicon are presented. These results include impurity levels, electronic properties of the silicon after crystal growth, and the performance of solar photovoltaic cells fabricated from wafers of the single crystals. The efficiency of the solar cells fabricated from semiconductor silicon and SiF4-Na silicon was the same

    Exact and Approximate Unitary 2-Designs: Constructions and Applications

    Get PDF
    We consider an extension of the concept of spherical t-designs to the unitary group in order to develop a unified framework for analyzing the resource requirements of randomized quantum algorithms. We show that certain protocols based on twirling require a unitary 2-design. We describe an efficient construction for an exact unitary 2-design based on the Clifford group, and then develop a method for generating an epsilon-approximate unitary 2-design that requires only O(n log(1/epsilon)) gates, where n is the number of qubits and epsilon is an appropriate measure of precision. These results lead to a protocol with exponential resource savings over existing experimental methods for estimating the characteristic fidelities of physical quantum processes

    Word-level Symbolic Trajectory Evaluation

    Full text link
    Symbolic trajectory evaluation (STE) is a model checking technique that has been successfully used to verify industrial designs. Existing implementations of STE, however, reason at the level of bits, allowing signals to take values in {0, 1, X}. This limits the amount of abstraction that can be achieved, and presents inherent limitations to scaling. The main contribution of this paper is to show how much more abstract lattices can be derived automatically from RTL descriptions, and how a model checker for the general theory of STE instantiated with such abstract lattices can be implemented in practice. This gives us the first practical word-level STE engine, called STEWord. Experiments on a set of designs similar to those used in industry show that STEWord scales better than word-level BMC and also bit-level STE.Comment: 19 pages, 3 figures, 2 tables, full version of paper in International Conference on Computer-Aided Verification (CAV) 201

    On the Hybrid Extension of CTL and CTL+

    Full text link
    The paper studies the expressivity, relative succinctness and complexity of satisfiability for hybrid extensions of the branching-time logics CTL and CTL+ by variables. Previous complexity results show that only fragments with one variable do have elementary complexity. It is shown that H1CTL+ and H1CTL, the hybrid extensions with one variable of CTL+ and CTL, respectively, are expressively equivalent but H1CTL+ is exponentially more succinct than H1CTL. On the other hand, HCTL+, the hybrid extension of CTL with arbitrarily many variables does not capture CTL*, as it even cannot express the simple CTL* property EGFp. The satisfiability problem for H1CTL+ is complete for triply exponential time, this remains true for quite weak fragments and quite strong extensions of the logic

    Milk Yield of Dairy Buffaloes Supplemented with Yeast Solution and Yeast-fermented Cassava Pulp

    Get PDF
    Feed resource availability and quality are two of the major factors limiting dairy production in the Philippines. Utilization of microbial-based feed additives and agricultural by-products such as cassava pulp aided by fermentation technology can help provide the needed resource. This study aimed to determine the effect of activated yeast (Saccharomyces cerevisiae) solution (AYS) and yeast-fermented cassava pulp (YFCP) on milk production and feed cost-efficiency in dairy buffaloes. The study followed RCBD design using 63 dairy buffaloes at the Philippine Carabao Center in Ubay Stock Farm, Bohol. The average daily milk yield (ADMY) of buffaloes supplemented with 0.5L AYS and 1L AYS twice daily were greater than that of control buffaloes by 0.67L and 0.69L, respectively (P = 0.0039).On the other hand, the ADMY of buffaloes fed with YFCP and YFCP+AYS were greater than that of control buffaloes by 0.64 and 0.68L, respectively (P = 0.0320). Supplementation of AYS and feeding YFCP yielded the lowest cost per liter of milk produced at PhP 20.25 and PhP 16.24, respectively. It is recommended to supplement milking dairy buffaloes with AYS or feeding YFCP in areas with cassava pulp to increase feed resource, increase milk production and improve feed cost-efficiency thereby increasing significantly the farmer’s income
    • …
    corecore