5,807 research outputs found

    Scanamorphos: a map-making software for Herschel and similar scanning bolometer arrays

    Full text link
    Scanamorphos is one of the public softwares available to post-process scan observations performed with the Herschel photometer arrays. This post-processing mainly consists in subtracting the total low-frequency noise (both its thermal and non-thermal components), masking high-frequency artefacts such as cosmic ray hits, and projecting the data onto a map. Although it was developed for Herschel, it is also applicable with minimal adjustment to scan observations made with some other imaging arrays subjected to low-frequency noise, provided they entail sufficient redundancy; it was successfully applied to P-Artemis, an instrument operating on the APEX telescope. Contrary to matrix-inversion softwares and high-pass filters, Scanamorphos does not assume any particular noise model, and does not apply any Fourier-space filtering to the data, but is an empirical tool using purely the redundancy built in the observations -- taking advantage of the fact that each portion of the sky is sampled at multiple times by multiple bolometers. It is an interactive software in the sense that the user is allowed to optionally visualize and control results at each intermediate step, but the processing is fully automated. This paper describes the principles and algorithm of Scanamorphos and presents several examples of application.Comment: This is the final version as accepted by PASP (on July 27, 2013). A copy with much better-quality figures is available on http://www2.iap.fr/users/roussel/herschel

    Randomized benchmarking of single and multi-qubit control in liquid-state NMR quantum information processing

    Full text link
    Being able to quantify the level of coherent control in a proposed device implementing a quantum information processor (QIP) is an important task for both comparing different devices and assessing a device's prospects with regards to achieving fault-tolerant quantum control. We implement in a liquid-state nuclear magnetic resonance QIP the randomized benchmarking protocol presented by Knill et al (PRA 77: 012307 (2008)). We report an error per randomized π2\frac{\pi}{2} pulse of 1.3±0.1×10−41.3 \pm 0.1 \times 10^{-4} with a single qubit QIP and show an experimentally relevant error model where the randomized benchmarking gives a signature fidelity decay which is not possible to interpret as a single error per gate. We explore and experimentally investigate multi-qubit extensions of this protocol and report an average error rate for one and two qubit gates of 4.7±0.3×10−34.7 \pm 0.3 \times 10^{-3} for a three qubit QIP. We estimate that these error rates are still not decoherence limited and thus can be improved with modifications to the control hardware and software.Comment: 10 pages, 6 figures, submitted versio

    Characterization of complex quantum dynamics with a scalable NMR information processor

    Get PDF
    We present experimental results on the measurement of fidelity decay under contrasting system dynamics using a nuclear magnetic resonance quantum information processor. The measurements were performed by implementing a scalable circuit in the model of deterministic quantum computation with only one quantum bit. The results show measurable differences between regular and complex behaviour and for complex dynamics are faithful to the expected theoretical decay rate. Moreover, we illustrate how the experimental method can be seen as an efficient way for either extracting coarse-grained information about the dynamics of a large system, or measuring the decoherence rate from engineered environments.Comment: 4pages, 3 figures, revtex4, updated with version closer to that publishe

    Reflections on Legal Education and the Practice of Law

    Get PDF

    MANAGEMENT OF PUBLIC LAND RESOURCES

    Get PDF

    Proxy Contest Expenses and Shareholder Democracy

    Get PDF

    Reflections on Legal Education and the Practice of Law

    Get PDF
    • …
    corecore