5,826 research outputs found
Scanamorphos: a map-making software for Herschel and similar scanning bolometer arrays
Scanamorphos is one of the public softwares available to post-process scan
observations performed with the Herschel photometer arrays. This
post-processing mainly consists in subtracting the total low-frequency noise
(both its thermal and non-thermal components), masking high-frequency artefacts
such as cosmic ray hits, and projecting the data onto a map. Although it was
developed for Herschel, it is also applicable with minimal adjustment to scan
observations made with some other imaging arrays subjected to low-frequency
noise, provided they entail sufficient redundancy; it was successfully applied
to P-Artemis, an instrument operating on the APEX telescope. Contrary to
matrix-inversion softwares and high-pass filters, Scanamorphos does not assume
any particular noise model, and does not apply any Fourier-space filtering to
the data, but is an empirical tool using purely the redundancy built in the
observations -- taking advantage of the fact that each portion of the sky is
sampled at multiple times by multiple bolometers. It is an interactive software
in the sense that the user is allowed to optionally visualize and control
results at each intermediate step, but the processing is fully automated. This
paper describes the principles and algorithm of Scanamorphos and presents
several examples of application.Comment: This is the final version as accepted by PASP (on July 27, 2013). A
copy with much better-quality figures is available on
http://www2.iap.fr/users/roussel/herschel
Randomized benchmarking of single and multi-qubit control in liquid-state NMR quantum information processing
Being able to quantify the level of coherent control in a proposed device
implementing a quantum information processor (QIP) is an important task for
both comparing different devices and assessing a device's prospects with
regards to achieving fault-tolerant quantum control. We implement in a
liquid-state nuclear magnetic resonance QIP the randomized benchmarking
protocol presented by Knill et al (PRA 77: 012307 (2008)). We report an error
per randomized pulse of with a
single qubit QIP and show an experimentally relevant error model where the
randomized benchmarking gives a signature fidelity decay which is not possible
to interpret as a single error per gate. We explore and experimentally
investigate multi-qubit extensions of this protocol and report an average error
rate for one and two qubit gates of for a three
qubit QIP. We estimate that these error rates are still not decoherence limited
and thus can be improved with modifications to the control hardware and
software.Comment: 10 pages, 6 figures, submitted versio
Characterization of complex quantum dynamics with a scalable NMR information processor
We present experimental results on the measurement of fidelity decay under
contrasting system dynamics using a nuclear magnetic resonance quantum
information processor. The measurements were performed by implementing a
scalable circuit in the model of deterministic quantum computation with only
one quantum bit. The results show measurable differences between regular and
complex behaviour and for complex dynamics are faithful to the expected
theoretical decay rate. Moreover, we illustrate how the experimental method can
be seen as an efficient way for either extracting coarse-grained information
about the dynamics of a large system, or measuring the decoherence rate from
engineered environments.Comment: 4pages, 3 figures, revtex4, updated with version closer to that
publishe
Technology for space shuttle main engine control checkout and diagnosis /GP 70-232/
Electronic control for space shuttle main engin
- …