2 research outputs found

    TB-diabetes co-morbidity in Ghana : the importance of Mycobacterium africanum infection

    Get PDF
    Diabetes Mellitus (DM) is a known risk factor for tuberculosis (TB) but little is known on TB-Diabetes Mellitus (TBDM) co-morbidity in Sub-Saharan Africa.; Consecutive TB cases registered at a tertiary facility in Ghana were recruited from September 2012 to April 2016 and screened for DM using random blood glucose and glycated hemoglobin (HbA1c) level. TB patients were tested for other clinical parameters including HIV co-infection and TB lesion location. Mycobacterial isolates obtained from collected sputum samples were characterized by standard methods. Associations between TBDM patients' epidemiological as well as microbiological variables were assessed.; The prevalence of DM at time of diagnosis among 2990 enrolled TB cases was 9.4% (282/2990). TBDM cases were significantly associated with weight loss, poor appetite, night sweat and fatigue (p<0.001) and were more likely (p<0.001) to have lower lung cavitation 85.8% (242/282) compared to TB Non-Diabetic (TBNDM) patients 3.3% (90/2708). We observed 22.3% (63/282) treatment failures among TBDM patients compared to 3.8% (102/2708) among TBNDM patients (p<0.001). We found no significant difference in the TBDM burden attributed by M. tuberculosis sensu stricto (Mtbss) and Mycobacterium africanum (Maf) and (Mtbss; 176/1836, 9.6% and Maf; 53/468, 11.3%, p = 0.2612). We found that diabetic individuals were suggestively likely to present with TB caused by M. africanum Lineage 6 as opposed to Mtbss (odds ratio (OR) = 1.52; 95% confidence interval (CI): 0.92-2.42, p = 0.072).; Our findings confirms the importance of screening for diabetes during TB diagnosis and highlights the association between genetic diversity and diabetes. in Ghana

    A molecular and epidemiological study of Vibrio cholerae isolates from cholera outbreaks in southern Ghana.

    Get PDF
    Cholera remains a major global public health threat and continuous emergence of new Vibrio cholerae strains is of major concern. We conducted a molecular epidemiological study to detect virulence markers and antimicrobial resistance patterns of V. cholerae isolates obtained from the 2012-2015 cholera outbreaks in Ghana. Archived clinical isolates obtained from the 2012, 2014 and 2015 cholera outbreaks in Ghana were revived by culture and subjected to microscopy, biochemical identification, serotyping, antibiotic susceptibility testing, molecular detection of distinct virulence factors and Multi-Locus Variable-Number of Tandem-Repeat Analysis (MLVA). Of 277 isolates analysed, 168 (60.6%) were confirmed to be V. cholerae and 109 (39.4%) isolates constituted other bacteria (Escherichia coli, Aeromonas sobria, Pseudomonas aeruginosa, Enterobacter cloacae and Enterococci faecalis). Serotyping the V. cholerae isolates identified 151 (89.9%) as Ogawa, 3 (1.8%) as Inaba and 14 (8.3%) as non-O1/O139 serogroup. The O1 serogroup isolates (154/168, 91.7%) carried the cholera toxin ctxB gene as detected by PCR. Additional virulence genes detected include zot, tcpA, ace, rtxC, toxR, rtxA, tcpP, hlyA and tagA. The most common and rare virulence factors detected among the isolates were rtxC (165 isolates) and tcpP (50 isolates) respectively. All isolates from 2014 and 2015 were multidrug resistant against the selected antibiotics. MLVA differentiated the isolates into 2 large unique clones A and B, with each predominating in a particular year. Spatial analysis showed clustering of most isolates at Ablekuma sub-district. Identification of several virulence genes among the two different genotypes of V. cholerae isolates and resistance to first- and second-line antibiotics, calls for scaleup of preventive strategies to reduce transmission, and strengthening of public health laboratories for rapid antimicrobial susceptibility testing to guide accurate treatment. Our findings support the current WHO licensed cholera vaccines which include both O1 Inaba and Ogawa serotypes
    corecore