14 research outputs found

    KIT Is Required for Fetal Liver Hematopoiesis

    Get PDF
    In the mouse embryo, endothelial cell (EC) progenitors almost concomitantly give rise to the first blood vessels in the yolk sac and the large vessels of the embryo proper. Although the first blood cells form in the yolk sac before blood vessels have assembled, consecutive waves of hematopoietic progenitors subsequently bud from hemogenic endothelium located within the wall of yolk sac and large intraembryonic vessels in a process termed endothelial-to-hematopoietic transition (endoHT). The receptor tyrosine kinase KIT is required for late embryonic erythropoiesis, but KIT is also expressed in hematopoietic progenitors that arise via endoHT from yolk sac hemogenic endothelium to generate early, transient hematopoietic waves. However, it remains unclear whether KIT has essential roles in early hematopoiesis. Here, we have combined single-cell expression studies with the analysis of knockout mice to show that KIT is dispensable for yolk sac endoHT but required for transient definitive hematopoiesis in the fetal liver

    KIT is dispensable for physiological organ vascularisation in the embryo

    Get PDF
    Blood vessels form vast networks in all vertebrate organs to sustain tissue growth, repair and homeostatic metabolism, but they also contribute to a range of diseases with neovascularisation. It is, therefore, important to define the molecular mechanisms that underpin blood vessel growth. The receptor tyrosine kinase KIT is required for the normal expansion of hematopoietic progenitors that arise during embryogenesis from hemogenic endothelium in the yolk sac and dorsal aorta. Additionally, KIT has been reported to be expressed in endothelial cells during embryonic brain vascularisation and has been implicated in pathological angiogenesis. However, it is neither known whether KIT expression is widespread in normal organ endothelium nor whether it promotes blood vessel growth in developing organs. Here, we have used single-cell analyses to show that KIT is expressed in endothelial cell subsets of several organs, both in the adult and in the developing embryo. Knockout mouse analyses revealed that KIT is dispensable for vascularisation of growing organs in the midgestation embryo, including the lung, liver and brain. By contrast, vascular changes emerged during late-stage embryogenesis in these organs from KIT-deficient embryos, concurrent with severe erythrocyte deficiency and growth retardation. These findings suggest that KIT is not required for developmental tissue vascularisation in physiological conditions, but that KIT deficiency causes foetal anaemia at late gestation and thereby pathological vascular remodelling

    Embryonic Diapause Is Conserved across Mammals

    Get PDF
    Embryonic diapause (ED) is a temporary arrest of embryo development and is characterized by delayed implantation in the uterus. ED occurs in blastocysts of less than 2% of mammalian species, including the mouse (Mus musculus). If ED were an evolutionarily conserved phenomenon, then it should be inducible in blastocysts of normally non-diapausing mammals, such as domestic species. To prove this hypothesis, we examined whether blastocysts from domestic sheep (Ovis aries) could enter into diapause following their transfer into mouse uteri in which diapause conditions were induced. Sheep blastocysts entered into diapause, as demonstrated by growth arrest, viability maintenance and their ED-specific pattern of gene expression. Seven days after transfer, diapausing ovine blastocysts were able to resume growth in vitro and, after transfer to surrogate ewe recipients, to develop into normal lambs. The finding that non-diapausing ovine embryos can enter into diapause implies that this phenomenon is phylogenetically conserved and not secondarily acquired by embryos of diapausing species. Our study questions the current model of independent evolution of ED in different mammalian orders

    Experimental design of embryonic diapause (ED) induction in ovine blastocysts by transfer into ovariectomised pseudo-pregnant mice at 2.5 dpc.

    No full text
    <p>Following uterine flushing, diapausing ovine blastocysts were analyzed or transferred to foster ewes at day 6 after oestrus for full term development. The timing indicated in the diagram refers to embryos.</p

    Confirmation of ED in ovine embryos.

    No full text
    <p>(<i>a</i>) Proportion of BrdU- and TUNEL-positive cells in diapausing ovine and murine blastocysts flushed from ovariectomised mouse uteri and in controls (<i>b</i>) qRT-PCR analysis of genes involved in ED control. Genes that positively regulate cell proliferation (<i>PCNA</i>) and signaling (<i>HB-EGF</i>) were not expressed in diapausing ovine blastocysts, while the anti-proliferative gene <i>BTG1</i> was significantly over-expressed. <i>IGF2R</i> mRNA expression did not differ statistically between diapausing and control blastocysts. (c) Immunolocalization of CB1 (green) in diapausing (middle panel) and control ovine blastocysts (upper panel). Nuclei (red) were visualized with propidium iodide. CB1 expression is higher in diapausing ovine blastocysts. Lower panel: ovine blastocysts incubated with neutralized anti-CB1 antibody showing no positive signal. For each experiment ≥5 blastocysts were used and it was repeated 3–5 times. <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0033027#s2" target="_blank">Results</a> are mean ± S.E.M. *** p<0.0001, ** p<0.003, *p<0.03.</p

    Reversibility of growth arrest in ovine embryos following flushing from the uterus of ovariectomised mice

    No full text
    <p>. (<i>a</i>) Ovine blastocysts before (i) and immediately after (ii) transfer to mouse uteri, and following 12 hours of culture in vitro (iii). (<i>b</i>) Percentage of BrdU-positive, proliferating cells and of embryos hatching from the <i>zona pellucida</i> in diapaused ovine blastocysts after 48 hours in culture and number of offspring developed from diapaused ovine blastocysts following their transfer into receptive uteri of foster ewes. Controls were in vitro cultured ovine blastocysts (day 6.5). For each experiment ≥5 blastocysts were used and it was repeated 3–5 times. <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0033027#s2" target="_blank">Results</a> are mean ± S.E. M *p<0.05.</p

    Safety and Efficacy of Outpatient Treatments for COVID-19: Real-Life Data from a Regionwide Cohort of High-Risk Patients in Tuscany, Italy (the FEDERATE Cohort)

    Get PDF
    Early COVID-19 treatments can prevent progression to severe disease. However, real-life data are still limited, and studies are warranted to monitor the efficacy and tolerability of these drugs. We retrospectively enrolled outpatients receiving early treatment for COVID-19 in 11 infectious diseases units in the Tuscany region of Italy between 1 January and 31 March 2022, when Omicron sublineages BA.1 and BA.2 were circulating. Eligible COVID-19 patients were treated with sotrovimab (SOT), remdesivir (RMD), nirmatrelvir/ritonavir (NRM/r), or molnupiravir (MOL). We gathered demographic and clinical features, 28-day outcomes (hospitalization or death), and drugs tolerability. A total of 781 patients (median age 69.9, 66% boosted for SARS-CoV-2) met the inclusion criteria, of whom 314 were treated with SOT (40.2%), 205 with MOL (26.3%), 142 with RMD (18.2%), and 120 with NRM/r (15.4%). Overall, 28-day hospitalization and death occurred in 18/781 (2.3%) and 3/781 (0.3%), respectively. Multivariable Cox regression showed that patients receiving SOT had a reduced risk of meeting the composite outcome (28-day hospitalization and/or death) in comparison to the RMD cohort, while no significant differences were evidenced for the MOL and NRM/r groups in comparison to the RMD group. Other predictors of negative outcomes included cancer, chronic kidney disease, and a time between symptoms onset and treatment administration > 3 days. All treatments showed good safety and tolerability, with only eight patients (1%) whose treatment was interrupted due to intolerance. In the first Italian multicenter study presenting real-life data on COVID-19 early treatments, all regimens demonstrated good safety and efficacy. SOT showed a reduced risk of progression versus RMD. No significant differences of outcome were observed in preventing 28-day hospitalization and death among patients treated with RMD, MOL, and NRM/r

    Safety and Efficacy of Outpatient Treatments for COVID-19: Real-Life Data from a Regionwide Cohort of High-Risk Patients in Tuscany, Italy (the FEDERATE Cohort)

    No full text
    Early COVID-19 treatments can prevent progression to severe disease. However, real-life data are still limited, and studies are warranted to monitor the efficacy and tolerability of these drugs. We retrospectively enrolled outpatients receiving early treatment for COVID-19 in 11 infectious diseases units in the Tuscany region of Italy between 1 January and 31 March 2022, when Omicron sublineages BA.1 and BA.2 were circulating. Eligible COVID-19 patients were treated with sotrovimab (SOT), remdesivir (RMD), nirmatrelvir/ritonavir (NRM/r), or molnupiravir (MOL). We gathered demographic and clinical features, 28-day outcomes (hospitalization or death), and drugs tolerability. A total of 781 patients (median age 69.9, 66% boosted for SARS-CoV-2) met the inclusion criteria, of whom 314 were treated with SOT (40.2%), 205 with MOL (26.3%), 142 with RMD (18.2%), and 120 with NRM/r (15.4%). Overall, 28-day hospitalization and death occurred in 18/781 (2.3%) and 3/781 (0.3%), respectively. Multivariable Cox regression showed that patients receiving SOT had a reduced risk of meeting the composite outcome (28-day hospitalization and/or death) in comparison to the RMD cohort, while no significant differences were evidenced for the MOL and NRM/r groups in comparison to the RMD group. Other predictors of negative outcomes included cancer, chronic kidney disease, and a time between symptoms onset and treatment administration &gt; 3 days. All treatments showed good safety and tolerability, with only eight patients (1%) whose treatment was interrupted due to intolerance. In the first Italian multicenter study presenting real-life data on COVID-19 early treatments, all regimens demonstrated good safety and efficacy. SOT showed a reduced risk of progression versus RMD. No significant differences of outcome were observed in preventing 28-day hospitalization and death among patients treated with RMD, MOL, and NRM/r
    corecore