25 research outputs found

    SYNTHESIS, ANTICANCER EVALUATION AND MOLECULAR MODELING OF SOME SUBSTITUTED THIAZOLIDINONYL AND THIAZOLYL PYRAZOLE DERIVATIVES

    Get PDF
    Objective: The present work aimed to synthesize some new substituted thiazoles incorporated to pyrazole moiety starting from 1-(3-chlorophenyl)-3-(4-methoxyphenyl)-1H-pyrazole-4-carboxaldehyde (1) in order to evaluate their anticancer activity and GSTP1 inhibition in a trail to explore new potential GST inhibitors and prevent the resistance of cells to anticancer drugs. In addition, investigate the probability of the most promising cytotoxic compounds to inhibit GSTP1 enzyme via molecular docking study.Methods: The carboxaldehyde 1 was treated with substituted thiosemicarbazide in absolute ethanol to give the corresponding thiosemicarbazone derivatives 2a–d. Cyclization of 2a-d either by ethyl bromoacetate, phenacyl bromide or maleic acid anhydride furnished new thiazole derivatives 3, 4 and 5, respectively. These target compound 2-5 were screened for their GSTP1 inhibition and cytotoxic activity against HEPG-2 (human liver carcinoma), A549 (human lung carcinoma) and PC3 (human prostate carcinoma). Finally, molecular docking study of the most promising cytotoxic compounds against GSTP1 (PDB ID: 3GUS) is discussed.Results: Compounds 4a, 4b, and 4d were found to be highly active against HEPG-2 and PC-3 cancer cell lines with IC50 values ranging from 0.2±0.81 to 9.3±2.08 μM compared to doxorubicin with IC50= 37.8±1.50 and 41.1±2.01 μM, respectively. Screening of 4a, 4b and 4d against GSTP1 showed higher inhibition activity with IC50 ranging from 1.5±0.18 to 4.3±0.29 μM. Docking studies revealed the promising binding affinities of the latter compounds which match with the binding mode of the ligand, NBDHEX toward the active site of GSTP1.Conclusion: Compounds 4a, 4b and 4d were distinguished by the higher anticancer activity against HEPG-2, A-549 and PC-3 cell lines of tumor and the remarkable inhibitory activity against GSTP1

    Nanoparticles of a pyrazolo-pyridazine derivative as potential EGFR and CDK-2 inhibitors: design, structure determination, anticancer evaluation and in silico studies

    Get PDF
    The strategic planning of this study is based upon using the nanoformulation method to prepare nanoparticles 4-SLNs and 4-LPHNPs of the previously prepared 4,5-diphenyl-1H-pyrazolo[3,4-c]pyridazin-3-amine (4) after confirming its structure with single crystal X-ray analysis. These nanoparticles exhibited promising cytotoxic activity against HepG-2, HCT-116 and MCF-7 cancer cell lines in comparison with the reference doxorubicin and the original derivative 4. Moreover, their inhibitory assessment against EGFR and CDK-2/cyclin A2 displayed improved and more favorable impact than the parent 4 and the references. Detection of their influence upon cancer biomarkers revealed upregulation of Bax, p53 and caspase-3 levels and downregulation of Bcl-2 levels. The docking simulation demonstrated that the presence of the pyrazolo[3,4-c]pyridazin-3-amine scaffold is amenable to enclosure and binding well within EGFR and CDK-2 receptors through different hydrophilic interactions. The pharmacokinetic and physicochemical properties of target 4 were also assessed with ADME investigation, and the outcome indicated good drug-like characteristics

    New Quinazolin-4(3H)-one Derivatives Incorporating Hydrazone and Pyrazole Scaffolds as Antimicrobial Agents Targeting DNA Gyraze Enzyme

    No full text
    The present work includes the synthesis of a new series of quinazolin-4(3H)-one compounds (4a–f, 5a–d) as antimicrobial agents. The starting compound, 2-hydrazinylquinazolin-4(3H)-one (2), was synthesized and treated with different carbonyl compounds to afford the hydrazone derivatives 4a–f. In addition, the hydrazone derivatives 4a–d were treated with a DMF/POCl3 mixture to give the formyl-pyrazole derivatives 5a–d. All the target compounds were evaluated as antimicrobial agents against four bacterial and four fungal strains. The majority of the tested compounds showed potent antimicrobial activity compared with the reference antibiotics. The most potent antimicrobial activity was shown by 5a with MIC values in the range (1–16) μg/mL. In addition, the most potent compounds against E. coli were evaluated for their inhibitory activity against E. coli DNA gyrase, whereas the target compounds 4a, 5a, 5c, and 5d showed the most potent inhibition to the target enzyme with IC50 values ranging from 3.19 to 4.17 µM. Furthermore, molecular docking studies were performed for the most active compounds against the target E. coli DNA gyrase to determine their binding affinity within the enzyme’s active site. Moreover, ADME evaluations of these compounds predicted their high oral bioavailability and good GI absorption

    New Quinazolin-4(3<i>H</i>)-one Derivatives Incorporating Hydrazone and Pyrazole Scaffolds as Antimicrobial Agents Targeting DNA Gyraze Enzyme

    No full text
    The present work includes the synthesis of a new series of quinazolin-4(3H)-one compounds (4a–f, 5a–d) as antimicrobial agents. The starting compound, 2-hydrazinylquinazolin-4(3H)-one (2), was synthesized and treated with different carbonyl compounds to afford the hydrazone derivatives 4a–f. In addition, the hydrazone derivatives 4a–d were treated with a DMF/POCl3 mixture to give the formyl-pyrazole derivatives 5a–d. All the target compounds were evaluated as antimicrobial agents against four bacterial and four fungal strains. The majority of the tested compounds showed potent antimicrobial activity compared with the reference antibiotics. The most potent antimicrobial activity was shown by 5a with MIC values in the range (1–16) μg/mL. In addition, the most potent compounds against E. coli were evaluated for their inhibitory activity against E. coli DNA gyrase, whereas the target compounds 4a, 5a, 5c, and 5d showed the most potent inhibition to the target enzyme with IC50 values ranging from 3.19 to 4.17 µM. Furthermore, molecular docking studies were performed for the most active compounds against the target E. coli DNA gyrase to determine their binding affinity within the enzyme’s active site. Moreover, ADME evaluations of these compounds predicted their high oral bioavailability and good GI absorption

    Synthesis and Biological Evaluation of New Pyridothienopyrimidine Derivatives as Antibacterial Agents and Escherichia coli Topoisomerase II Inhibitors

    No full text
    The growing resistance of bacteria to many antibiotics that have been in use for several decades has generated the need to discover new antibacterial agents with structural features qualifying them to overcome the resistance mechanisms. Thus, novel pyridothienopyrimidine derivatives (2a,b&ndash;a,b) were synthesized by a series of various reactions, starting with 3-aminothieno[2,3-b]pyridine-2-carboxamides (1a,b). Condensation of compounds 1a,b with cyclohexanone gave 1&rsquo;H-spiro[cyclohexane-1,2&rsquo;-pyrido[3&rsquo;,2&rsquo;:4,5]thieno[3,2-d]pyrimidin]-4&rsquo;(3&rsquo;H)-ones (2a,b), which in turn were utilized to afford the target 4-substituted derivatives (3a,b&ndash;8a,b). In vitro antibacterial activity evaluations of all the new compounds (2a,b&ndash;8a,b) were performed against six strains of Gram-negative and Gram-positive bacteria. The target compounds showed significant antibacterial activity, especially against Gram-negative strains. Moreover, the compounds (2a,b; 3a,b; 4a,b; and 5a,b) that exhibited potent activity against Escherichia coli were selected to screen their inhibitory activity against Escherichia coli topoisomerase II (DNA gyrase and topoisomerase IV) enzymes. Compounds 4a and 4b showed potent dual inhibition of the two enzymes with IC50 values of 3.44 &micro;&Mu; and 5.77 &micro;&Mu; against DNA gyrase and 14.46 &micro;&Mu; and 14.89 &micro;&Mu; against topoisomerase IV, respectively. In addition, docking studies were carried out to give insight into the binding mode of the tested compounds within the E. coli DNA gyrase B active site compared with novobiocin

    Design, Synthesis, Anticancer Evaluation, Enzymatic Assays, and a Molecular Modeling Study of Novel Pyrazole−Indole Hybrids

    Get PDF
    The molecular hybridization concept has recently emerged as a powerful approach in drug discovery. A series of novel indole derivatives linked to the pyrazole moiety were designed and developed via a molecular hybridization protocol as antitumor agents. The target compounds (5a–j and 7a–e) were prepared by the reaction of 5-aminopyrazoles (1a–e) with N-substituted isatin (4a,b) and 1H-indole-3-carbaldehyde (6), respectively. All products were characterized via several analytical and spectroscopic techniques. Compounds (5a–j and 7a–e) were screened for their cytotoxicity activities in vitro against four human cancer types [human colorectal carcinoma (HCT-116), human breast adenocarcinoma (MCF-7), human liver carcinoma (HepG2), and human lung carcinoma (A549)] using the MTT assay. The obtained results showed that the newly synthesized compounds displayed good-to-excellent antitumor activity. For example, 5-((1H-indol-3-yl)methyleneamino)-N-phenyl-3-(phenylamino)-1H-pyrazole-4-carboxamide (7a) and 5-((1H-indol-3-yl)methyleneamino)-3-(phenylamino)-N-(4-methylphenyl)-1H-pyrazole-4-carboxamide (7b) provided excellent anticancer inhibition performance against the HepG2 cancer cell line with IC50 values of 6.1 ± 1.9 and 7.9 ± 1.9 μM, respectively, compared to the standard reference drug, doxorubicin (IC50 = 24.7 ± 3.2 μM). The two powerful anticancer compounds (7a and 7b) were further subjected to cell cycle analysis and apoptosis investigation in HepG2 using flow cytometry. We have also studied the enzymatic assay of these two compounds against some enzymes, namely, caspase-3, Bcl-2, Bax, and CDK-2. Interestingly, the molecular docking study revealed that compounds 7a and 7b could well embed in the active pocket of the CDK-2 enzyme via different interactions. Overall, the prepared pyrazole–indole hybrids (7a and 7b) can be proposed as strong anticancer candidate drugs against various cancer cell lines.publishedVersio

    Synthesis, Antimicrobial Activity and Molecular Docking of Novel Thiourea Derivatives Tagged with Thiadiazole, Imidazole and Triazine Moieties as Potential DNA Gyrase and Topoisomerase IV Inhibitors

    No full text
    To develop new antimicrobial agents, a series of novel thiourea derivatives incorporated with different moieties 2&ndash;13 was designed and synthesized and their biological activities were evaluated. Compounds 7a, 7b and 8 exhibited excellent antimicrobial activity against all Gram-positive and Gram-negative bacteria, and the fungal Aspergillus flavus with minimum inhibitory concentration (MIC) values ranged from 0.95 &plusmn; 0.22 to 3.25 &plusmn; 1.00 &mu;g/mL. Furthermore, cytotoxicity studies against MCF-7 cells revealed that compounds 7a and 7b were the most potent with IC50 values of 10.17 &plusmn; 0.65 and 11.59 &plusmn; 0.59 &mu;M, respectively. On the other hand, the tested compounds were less toxic against normal kidney epithelial cell lines (Vero cells). The in vitro enzyme inhibition assay of 8 displayed excellent inhibitory activity against Escherichia coli DNA B gyrase and moderate one against E. coli Topoisomerase IV (IC50 = 0.33 &plusmn; 1.25 and 19.72 &plusmn; 1.00 &micro;M, respectively) in comparison with novobiocin (IC50 values 0.28 &plusmn; 1.45 and 10.65 &plusmn; 1.02 &micro;M, respectively). Finally, the molecular docking was done to position compound 8 into the E. coli DNA B and Topoisomerase IV active pockets to explore the probable binding conformation. In summary, compound 8 may serve as a potential dual E. coli DNA B and Topoisomerase IV inhibitor

    Design, Synthesis, Anticancer Evaluation, Enzymatic Assays, and a Molecular Modeling Study of Novel Pyrazole−Indole Hybrids

    No full text
    The molecular hybridization concept has recently emerged as a powerful approach in drug discovery. A series of novel indole derivatives linked to the pyrazole moiety were designed and developed via a molecular hybridization protocol as antitumor agents. The target compounds (5a–j and 7a–e) were prepared by the reaction of 5-aminopyrazoles (1a–e) with N-substituted isatin (4a,b) and 1H-indole-3-carbaldehyde (6), respectively. All products were characterized via several analytical and spectroscopic techniques. Compounds (5a–j and 7a–e) were screened for their cytotoxicity activities in vitro against four human cancer types [human colorectal carcinoma (HCT-116), human breast adenocarcinoma (MCF-7), human liver carcinoma (HepG2), and human lung carcinoma (A549)] using the MTT assay. The obtained results showed that the newly synthesized compounds displayed good-to-excellent antitumor activity. For example, 5-((1H-indol-3-yl)methyleneamino)-N-phenyl-3-(phenylamino)-1H-pyrazole-4-carboxamide (7a) and 5-((1H-indol-3-yl)methyleneamino)-3-(phenylamino)-N-(4-methylphenyl)-1H-pyrazole-4-carboxamide (7b) provided excellent anticancer inhibition performance against the HepG2 cancer cell line with IC50 values of 6.1 ± 1.9 and 7.9 ± 1.9 μM, respectively, compared to the standard reference drug, doxorubicin (IC50 = 24.7 ± 3.2 μM). The two powerful anticancer compounds (7a and 7b) were further subjected to cell cycle analysis and apoptosis investigation in HepG2 using flow cytometry. We have also studied the enzymatic assay of these two compounds against some enzymes, namely, caspase-3, Bcl-2, Bax, and CDK-2. Interestingly, the molecular docking study revealed that compounds 7a and 7b could well embed in the active pocket of the CDK-2 enzyme via different interactions. Overall, the prepared pyrazole–indole hybrids (7a and 7b) can be proposed as strong anticancer candidate drugs against various cancer cell lines

    Anticancer evaluation and molecular modeling of multi-targeted kinase inhibitors based pyrido[2,3-d]pyrimidine scaffold

    No full text
    An efficient synthesis of substituted pyrido[2,3-d]pyrimidines was carried out and evaluated for in vitro anticancer activity against five cancer cell lines, namely hepatic cancer (HepG-2), prostate cancer (PC-3), colon cancer (HCT-116), breast cancer (MCF-7), and lung cancer (A-549) cell lines. Regarding HepG-2, PC-3, HCT-116 cancer cell lines, 7-(4-chlorophenyl)-2-(3-methyl-5-oxo-2,3-dihydro-1H-pyrazol-1-yl)-5-(p-tolyl)- pyrido[2,3-d]pyrimidin-4(3H)-one (5a) exhibited strong, more potent anticancer (IC50: 0.3, 6.6 and 7 µM) relative to the standard doxorubicin (IC50: 0.6, 6.8 and 12.8 µM), respectively. Kinase inhibitory assessment of 5a showed promising inhibitory activity against three kinases namely PDGFR β, EGFR, and CDK4/cyclin D1 at two concentrations 50 and 100 µM in single measurements. Further, a molecular docking study for compound 5a was performed to verify the binding mode towards the EGFR and CDK4/cyclin D1 kinases
    corecore