16 research outputs found

    The quasi-irreversible inactivation of cytochrome P450 enzymes by paroxetine: a computational approach

    Full text link
    The mechanism-based inactivation (MBI) of P450 by paroxetine was investigated by computational analysis. The drug-enzyme interactions were figured out through studying energy profiles of three competing mechanisms. The potency of paroxetine as P450's inhibitor was estimated based on the availability of two active sites for the MBI in the paroxetine structure. The inactivation by the amino site of paroxetine mainly proceedsviathe hydrogen atom transfer pathway because of the lower energy demand of its rate determining step. In addition, the low-spin state is the predominant route in the MBI at the methylenedioxo active site as a result of being rebound barrier-free mechanism. Our comparative investigation showed that inactivation at the secondary amine is thermodynamically more favorable because of the lower energy barrier of the dehydration mechanism of the hydroxylated paroxetine complex than its methylenedioxo counterpart. The results of docking analysis coincided with the outputs of DFT calculations since the docking pose with the lowest binding affinity is that for conformation with polar interaction between the amino group of paroxetine and the oxo moiety of P450's active site. Assessment of the molecular dynamics simulations trajectories revealed the favorable interaction of paroxetine with P450This work has DGI Projects No. CTQ2015-63997-C

    Rumex dentatus L. phenolics ameliorate hyperglycemia by modulating hepatic key enzymes of carbohydrate metabolism, oxidative stress and PPARγ in diabetic rats

    Full text link
    Rumex dentatus L. is a flowering plant with promising therapeutic effects. This study investigated the antioxidant efficacy of phenolic compounds isolated from R. dentatus L. in vitro and by conducting density function theory (DFT) studies to explore the mechanisms of action. The antioxidant, anti-inflammatory and antidiabetic effects of polyphenols-rich R. dentatus extract (RDE) were investigated in type 2 diabetic rats. Phytochemical investigation of the aerial parts of R. dentatus resulted in the isolation of one new and seven known compounds isolated for the first time from this species. All isolated phenolics showed in vitro radical scavenging activity. The antioxidant activity of the compounds could be oriented by the hydrogen atom transfer and sequential proton loss electron transfer mechanisms in gas and water phases, respectively. In diabetic rats, RDE attenuated hyperglycemia, insulin resistance and liver injury and improved carbohydrate metabolism. RDE suppressed oxidative stress and inflammation and upregulated PPARγ. In silico molecular docking analysis revealed the binding affinity of the isolated compounds toward PPARγ. In conclusion, the computational calculations were correlated with the in vitro antioxidant activity of R. dentatus derived phenolics. R. dentatus attenuated hyperglycemia, liver injury, inflammation and oxidative stress, improved carbohydrate metabolism and upregulated PPARγ in diabetic ratsThis work has DGI Project no. CTQ2015-63997-C2, a generous allocation of computing time at the Centro de Computación Científica of the UAM is also acknowledge

    A flavonoid-rich fraction of Euphorbia peplus attenuates hyperglycemia, insulin resistance, and oxidative stress in a type 2 diabetes rat model

    Get PDF
    Background: Type 2 diabetes (T2D) is a metabolic disorder characterized by insulin resistance (IR) and hyperglycemia. Plants are valuable sources of therapeutic agents for the management of T2D. Euphorbia peplus has been widely used as a traditional medicine for the treatment of various diseases, but its beneficial role in T2D has not been fully explored.Methods: The anti-diabetic efficacy of E. peplus extract (EPE) was studied using rats with T2D induced by high-fat diet (HFD) and streptozotocin (STZ). The diabetic rats received 100, 200, and 400 mg/kg EPE for 4 weeks.Results: Phytochemical fractionation of the aerial parts of E. peplus led to the isolation of seven known flavonoids. Rats with T2D exhibited IR, impaired glucose tolerance, decreased liver hexokinase and glycogen, and upregulated glycogen phosphorylase, glucose-6-phosphatase (G-6-Pase), and fructose-1,6-bisphosphatase (F-1,6-BPase). Treatment with 100, 200, and 400 mg/kg EPE for 4 weeks ameliorated hyperglycemia, IR, liver glycogen, and the activities of carbohydrate-metabolizing enzymes. EPE attenuated dyslipidemia, serum transaminases, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and liver lipid accumulation, nuclear factor (NF)-κB p65, and lipid peroxidation, nitric oxide and enhanced antioxidants. All EPE doses upregulated serum adiponectin and liver peroxisome proliferator-activated receptor γ (PPARγ) in HFD/STZ-induced rats. The isolated flavonoids showed in silico binding affinity toward hexokinase, NF-κB, and PPARγ.Conclusion:E. peplus is rich in flavonoids, and its extract ameliorated IR, hyperglycemia, dyslipidemia, inflammation and redox imbalance, and upregulated adiponectin and PPARγ in rats with T2D

    Water biocatalytic effect attenuates cytochrome P450-mediated carcinogenicity of diethylnitrosamine: a computational insight

    Full text link
    The mechanism-based mutagenicity and carcinogenicity of diethylnitrosamine (DEN) are believed to act through interactions with cytochrome P450 (P450) enzymes. DFT calculations to explore the conceivable mechanisms underlying the reaction of P450 with DEN with and without water as a biocatalyst were performed. The results shed light on the biocatalytic role of water in lowering the H-abstraction energy barriers because of the electrostatic effect driven by hydrogen bonding. Our DFT analysis revealed how metabolites are formed in the dealkylation (toxification) and denitrosation (detoxification) pathways. Also, our findings uncovered the active position of DEN vulnerable to P450 interactions. Two factors control the toxification and detoxification rates: the stability of denitrosation products and the HS rebound barrier of the α-pathway. Thus, water biocatalytic attenuation of DEN carcinogenicity was attained by stabilizing denitrosation products and slowing the α-HS rebound process. Docking and MD simulations were performed to assess the binding modes of DEN to P450's active site and to inspect the denitrosation and dealkylation processes, respectivelyThis work was carried out with the financial support from PID2019-110091GB-I00 (MICINN) of the Ministerio de Ciencia, Innovación y Universidades of Spain and the PRIES-CM project Ref: Y2020/EMT-6290 from the Comunidad Autónoma de Madri

    Cytotoxic Activities of Flavonoids from Centaurea scoparia

    No full text
    Phytochemical studies on the ethanolic extract of the aerial parts of Centaurea scoparia led to the isolation of two new flavonoids, 3′,4′-dihydroxy-(3′′,4′′-dihydro-3′′-hydroxy-4′′-acetoxy)-2′′,2′′-dimethylpyrano-(5′′,6′′:7,8)-flavone-3-O-β-D-glucopyranoside (1) and 3,3′,4′-trihydroxy-(3′′,4′′-dihydro-3′′,4′′-dihydroxy)-2′′,2′′-dimethylpyrano-(5′′,6′′:7,8)-flavone (2), along with eight known flavonoids isolated for the first time from this plant, cynaroside (3), Apigetrin (4), centaureidin (5), oroxylin A (6), 5,7-dihydroxy-3′,4′,5′-trimethoxyflavone (7), atalantoflavone (8), 5-hydroxy-3′,4′,8-trimethoxy-2′′,2′′-dimethylpyrano (5′′,6′′:6,7)-flavone (9), and 3′,4′,5,8-tetramethoxy-2′′,2′′-dimethylpyrano (5′′,6′′:6,7)-flavone (10). The structures of the isolated compounds were elucidated by means of spectroscopic tools including 1D and 2D NMR, UV, IR, and mass spectroscopy. Cytotoxic activities of the isolated compounds were evaluated against human cervical carcinoma HeLa, human hepatocellular carcinoma HepG2, and human breast carcinoma MCF-7. Compound 2 was the most potent cytotoxic agent against HeLa cells with an IC50 0.079 μM

    Consumption of Terpenoids-Rich Padina pavonia Extract Attenuates Hyperglycemia, Insulin Resistance and Oxidative Stress, and Upregulates PPARγ in a Rat Model of Type 2 Diabetes

    No full text
    Seaweeds are rich in structurally diverse bioactive compounds with promising therapeutic effects. This study aimed to isolate and identify terpenes from the brown alga Padina pavonia and to investigate its antidiabetic activity, pointing to the possible involvement of peroxisome proliferator-activated receptor (PPAR)γ. Type 2 diabetes was induced by feeding rats a high fat diet (HFD) for 4 weeks followed by injection of 35 mg/kg streptozotocin (STZ). The diabetic rats received P. pavonia extract (PPE; 50, 100 and 200 mg/kg) for 4 weeks and samples were collected for analyses. HFD/STZ-induced rats showed hyperglycemia, dyslipidemia, impaired glucose tolerance, decreased insulin, and increased HbA1c and HOMA-IR. PPE ameliorated hyperglycemia and dyslipidemia, and improved glucose tolerance and insulin sensitivity in diabetic rats. Treatment with PPE increased hepatic hexokinase activity and glycogen, suppressed glucose-6-phosphatase, fructose-1,6-biphosphatase, and glycogen phosphorylase, and attenuated oxidative stress, inflammation, and liver injury and lipid infiltration in HFD/STZ-induced rats. In addition, PPE boosted antioxidants and upregulated PPARγ gene and protein expression in the liver of diabetic rats. Phytochemical investigation resulted in the isolation of six terpenes from PPE and in silico analysis revealed their binding affinity toward PPARγ. In conclusion, P. pavonia-derived terpenes attenuated hyperglycemia, dyslipidemia, oxidative stress, and inflammation, and improved insulin sensitivity and carbohydrate metabolism in type 2 diabetic rats. These beneficial effects are mediated via PPARγ activation. However, further studies to explore the exact mechanisms underlying the antidiabetic effect of PPE are recommended

    Deciphering the Molecular Mechanisms of Reactive Metabolite Formation in the Mechanism-Based Inactivation of Cytochrome p450 1B1 by 8-Methoxypsoralen and Assessing the Driving Effect of phe268

    No full text
    This study provides a comprehensive computational exploration of the inhibitory activity and metabolic pathways of 8-methoxypsoralen (8-MP), a furocoumarin derivative used for treating various skin disorders, on cytochrome P450 (P450). Employing quantum chemical DFT calculations, molecular docking, and molecular dynamics (MD) simulations analyses, the biotransformation mechanisms and the active site binding profile of 8-MP in CYP1B1 were investigated. Three plausible inactivation mechanisms were minutely scrutinized. Further analysis explored the formation of reactive metabolites in subsequent P450 metabolic processes, including covalent adduct formation through nucleophilic addition to the epoxide, 8-MP epoxide hydrolysis, and non-CYP-catalyzed epoxide ring opening. Special attention was paid to the catalytic effect of residue Phe268 on the mechanism-based inactivation (MBI) of P450 by 8-MP. Energetic profiles and facilitating conditions revealed a slight preference for the C4′=C5′ epoxidation pathway, while recognizing a potential kinetic competition with the 8-OMe demethylation pathway due to comparable energy demands. The formation of covalent adducts via nucleophilic addition, particularly by phenylalanine, and the generation of potentially harmful reactive metabolites through autocatalyzed ring cleavage are likely to contribute significantly to P450 metabolism of 8-MP. Our findings highlight the key role of Phe268 in retaining 8-MP within the active site of CYP1B1, thereby facilitating initial oxygen addition transition states. This research offers crucial molecular-level insights that may guide the early stages of drug discovery and risk assessment related to the use of 8-MP

    The protective effect of 7-hydroxycoumarin against cisplatin-induced liver injury is mediated via attenuation of oxidative stress and inflammation and upregulation of Nrf2/HO-1 pathway

    No full text
    Cisplatin (CIS) is an effective chemotherapy against different solid cancers. However, the adverse effects, including hepatotoxicity, limit its clinical use. 7-hydroxycoumarin (7-HC) possesses antioxidant and hepatoprotective activities, but its protective effect against CIS hepatotoxicity has not been investigated. This study evaluated the effect of 7-HC on liver injury, oxidative stress (OS), and inflammation provoked by CIS. Rats received 7-HC (25, 50, and 100 mg/kg) orally for 2 weeks followed by intraperitoneal injection of CIS (7 mg/kg) at day 15. CIS increased serum transaminases, alkaline phosphatase (ALP), and bilirubin and provoked tissue injury accompanied by elevated reactive oxygen species (ROS), malondialdehyde (MDA), and nitric oxide (NO). Liver nuclear factor (NF)-κB p65, inducible NO synthase (iNOS), pro-inflammatory cytokines, Bax, and caspase-3 were upregulated, and antioxidant defenses and Bcl-2 were decreased in CIS-treated rats, while 7-HC prevented liver injury and ameliorated OS, inflammatory and apoptosis markers. In addition, 7-HC enhanced nuclear factor erythroid 2–related factor 2 (Nrf2), and heme oxygenase (HO)-1 in CIS-administered rats and in silico studies revealed its binding affinity toward HO-1. In conclusion, 7-HC protected against CIS hepatotoxicity by mitigating OS and inflammatory response and modulating Nrf2/HO-1 pathway

    Berberine attenuates inflammation and oxidative stress and modulates lymphocyte E-NTPDase in acute hyperlipidemia

    No full text
    Hyperlipidemia is a common clinically encountered health condition worldwide that promotes the development and progression of cardiovascular diseases, including atherosclerosis. Berberine (BBR) is a natural product with acknowledged anti-inflammatory, antioxidant, and metabolic effects. This study evaluated the effect of BBR on lipid alterations, oxidative stress, and inflammatory response in rats with acute hyperlipidemia induced by poloxamer-407 (P-407). Rats were pretreated with BBR (25 and 50 mg/kg) for 14 days and acute hyperlipidemia was induced by a single dose of P-407 (500 mg/kg). BBR ameliorated hypercholesterolemia, hypertriglyceridemia, and plasma lipoproteins in P-407-adminsitered rats. Plasma lipoprotein lipase (LPL) activity was decreased, and hepatic 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase activity was enhanced in hyperlipidemic rats. The expression of low-density lipoprotein receptor (LDL-R) and ATP-binding cassette transporter 1 (ABCA1) was downregulated in hyperlipidemic rats. BBR enhanced LPL activity, upregulated LDL-R, and ABCA1, and suppressed HMG-CoA reductase in P-407-administered rats. Pretreatment with BBR ameliorated lipid peroxidation, nitric oxide (NO), pro-inflammatory mediators (interleukin [IL]-6, IL-1β, tumor necrosis factor [TNF]-α, interferon-γ, IL-4 and IL-18) and enhanced antioxidants. In addition, BBR suppressed lymphocyte ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) and ecto-adenosine deaminase (E-ADA) as well as NO and TNF-α release by macrophages isolated from normal and hyperlipidemic rats. In silico investigations revealed the binding affinity of BBR toward LPL, HMG-CoA reductase, LDL-R, PSK9, ABCA1, and E-NTPDase. In conclusion, BBR effectively prevented acute hyperlipidemia and its associated inflammatory responses by modulating LPL, cholesterolgenesis, cytokine release, and lymphocyte E-NTPDase and E-ADA. Therefore, BBR is an effective and safe natural compound that might be employed as an adjuvant against hyperlipidemia and its associated inflammation

    Multi-target action of Garcinia livingstonei extract and secondary metabolites against fatty acid synthase, α-glucosidase, and xanthine oxidase

    Get PDF
    Garcinia livingstonei is a traditional herbal medicine that showed beneficial health effects and bioactivities. Four compounds have been isolated from the plant leaves and were elucidated as lupeol, betulin, podocarpusflavone A, and amentoflavone. The inhibitory activities of G. livingstonei extract and isolated metabolites against fatty acid synthase (FAS), α-glucosidase, and xanthine oxidase (XO) were investigated in vitro. The affinity of the compounds toward the studied enzymes was investigated in silico. The plant extract inhibited FAS, α-glucosidase, and XO with IC50 values of 26.34, 67.88, and 33.05 µg/mL, respectively. Among the isolated metabolites, betulin exhibited the most inhibitory activity against α-glucosidase and XO with IC50 values of 38.96 and 30.94 µg/mL, respectively. Podocarpusflavone A and betulin were the most potent inhibitors of FAS with IC50 values of 24.08 and 27.96 µg/mL, respectively. Computational studies corroborated these results highlighting the interactions between metabolites and the enzymes. In conclusion, G. livingstonei and its constituents possess the potential to modulate enzymes involved in metabolism and oxidative stress
    corecore