14 research outputs found

    Arany nanorészecskéket tartalmazó bioaktív üveg – biopolimér kompozítok előállítása, jellemzése és alkalmazhatósága: Synthesis, characterization and applicability of bioactive glass – biopolymer composites with gold nanoparticles

    Get PDF
    Considering that the median age of our population is increasing, bone disorders or skin regeneration problems are of significant concern. The bioactive glass-biopolymer composites are materials with real potential to be used in tissue engineering. It is well-known, that the bioactive glasses (BG) can lead the promotion of growth of granulation tissue. The gold nanoparticles (AuNPs; ~20 nm) can induced the acceleration of wound healing including tissue regeneration, connective tissue regeneration and angiogenesis. It was demonstrated that the AuNPs in the sol-gel derived glass structure retain their properties. Alginate-pullulan (Alg-Pll) composites have good bioactivity and in vivo qualities in terms of bone regeneration. The goal of this study was to obtain the functional composites for future tissue engineering applications using BG with AuNPs introduced in Alg-Pll composites. After structural and morphological characterization of the composites, in vitro and in vivo bioactivity and biocompatibility were evaluated. The obtained results suggest that the obtained composites are materials for future soft tissue and bone engineering applications.  Kivonat A várható élettartam növekedésével egyre növekszik azon betegek száma, amelyek ortopédiai vagy bőr rekonstrukcióra szorulnak. A bioaktív üveg-biopolimer kompozitok potenciálisan alkalmazható anyagok a szövettani sebészetben. Ismert dolog, hogy a bioaktív üvegek (BG) elősegítik a granulációs szövetek növekedését. Az arany nanorészecskék (AuNPs; ~20 nm) gyorsítják a sebgyógyulást beleértve angiogenézist, a szövetek és kötőszövet regenerálódását. Tudjuk, hogy a szól-gél módszerrel előállított üveg szerkezetben bevitt AuNPs képes megőrizni ezen tulajdonságait. Az alginát-pullulán (kompozitok) remek bioaktivitásuknak köszönhetően aktívan részt vesznek az in vivo csont regenerálódásban. A tanulmány célja, hogy olyan funkcionális kompozitokat hozzunk létre, amelyek alkalmazhatók a szövettani sebészetben. Ehhez az Alg-Pll kompozitokban AuNPs tartalmazó BG vittünk be, majd szerkezeti és morfológiai jellemzéseket végeztünk. Ezt követtően az in vitro és in vivo bioaktivitás, valamint biokompatibilitást vizsgáltuk. A kapott eredmények azt sugallják, hogy az előállított kompozitok megfelelnek a lágyrész- és csonttechnikai alkalmazás elvárásainak

    Enhancement of chicken primordial germ cell in vitro maintenance using an automated cell image analyser

    Get PDF
    Primordial germ cells (PGCs) were isolated from blood samples of chicken embryos. We established four PGC lines: two males (FS-ZZ-101, GFP-ZZ-4ZP) and two females (FS-ZW-111, GFP-ZW-5ZP). We could not detect a significant difference in the marker expression profile, but there was a remarkable difference between the proliferation rates of these PGC lines. We monitored the number of PGCs throughout a three-day period using a high-content screening cell imaging and analysing system (HCS). We compared three different initial cell concentrations in the wells: similar to 1000 cells (1x), similar to 4000 (4x) and similar to 8000 (8x). For the GFP-ZW-5ZP, FS-ZZ-101 and FS-ZW-111 PGC lines the lowest doubling time was observed at 4x concentration, while for GFP-ZZ-4ZP we found the lowest doubling time at 1x concentration. At 8x initial concentration, the growth rate was high during the first two days for all cell lines, but this was followed by the appearance of cell aggregates decreasing the cell growth rate. We could conclude that the difference in proliferation rate could mainly be attributed to genotypic variation in the established PGC lines, but external factors such as cell concentration and quality of the culture medium also affect the growth rate of PGCs

    Anthocyanins and Carotenoids Characterization in Flowers and Leaves of Cyclamen Genotypes Linked with Bioactivities Using Multivariate Analysis Techniques

    No full text
    The present study was carried out to evaluate and compare in vitro antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH), Trolox equivalent antioxidant capacity (TEAC), and ferric reducing antioxidant power (FRAP)), antimicrobial, anticancer activities, and the individual carotenoids and anthocyanins content of methanol extracts of the Cyclamen genotypes: Persian cyclamen accessions (Cyclamen persicum Mill.), sowbread (C. mirabile Hildebr.), and ivy-leaved cyclamen (C. hederifolium Mill.) aerial parts. The HPLC-PDA analysis revealed the presence of five individual carotenoids (i.e., neoxanthin, violaxanthin, lutein, β-carotene, and cis-β-carotene) as the main compounds in Cyclamen leaves, and the presence of seven individual anthocycanins (i.e., cyanidin 3,5-di-O-glucoside, peonidin-rutinoside, peonidin 3,5-di-O-glucoside, peonidin 3-O-glucoside, malvidin 3-O-glucoside, malvidin 3,5-di-O-glucoside, and malvidin-rutinoside) in Cyclamen flowers reported, hereby, for the first time. The highest phenolic content was found in the leaves of LC6, C. mirabile (46.32 ± 0.14 mg/g gallic acid equivalents [GAE]), and in the flowers of C. persicum Merengue Magenta (FC15) (58.63 ± 0.17 mg/g GAE), whereas the highest flavonoid content was reported in C. persicum Halios Falbala leaves, namely LC9 (54.90 ± 0.27 mg/g quercetin equivalents [QE]) and in flowers of C. persicum Victora (FC2) (77.87 ± 0.25 mg/g QE). The highest antioxidant activity in DPPH and FRAP assays was reported in C. persicum Dark Violet (LC1) and Victoria (LC2), whereas C. mirabile (LC6) had the highest activity in the TEAC assay. In flowers, high antioxidant activities in DPPH and TEAC were noticed in C. persicum Superserie Red (FC7) and Dark Violet (FC1), respectively, and Halios Falbala (FC9) exhibited the highest activity in the TEAC assay. Additionally, FC9 exhibited the highest antibacterial activity in almost all tested bacteria compared with the leaves extracts. Furthermore, the highest in vitro citotoxicity in MDA-MB-231 cells was noticed in C. hederifolium LC18 (56.71–69.35%) and FC18 (40.07–41.43%), with a lower effect against BJ cells demonstrating selective toxicity. The above findings, highlight the potential use of the Cyclamen flower and leaf extracts as significant anticancer agents along with their antioxidant and antimicrobial properties

    New Cu<sup>+2</sup> Complexes with N-Sulfonamide Ligands: Potential Antitumor, Antibacterial, and Antioxidant Agents

    No full text
    Nowadays, the discovery of a new non-toxic metal complex with biological activity represents a very active area of research. Two Cu+2 complexes, [Cu(L1)2(H2O)3] (C1) (HL1= N-(5-(4-methylphenyl)-[1,3,4]–thiadiazole–2-yl)-naphtalenesulfonamide) and [Cu(L2)2(py)2(H2O)] (C2) (HL2= N-(5-ethyl-[1,3,4]–thiadiazole–2-yl)-naphtalenesulfonamide), with two new ligands were synthesized. The X-ray crystal structures of the complexes were determined. In both complexes, Cu+2 is five-coordinated, forming a CuN2O3 and CuN4O chromophore, respectively. The ligands act as monodentate, coordinating the metal ion through a single Nthiadiazole atom; for the C2 complex, the molecules from the reaction medium (pyridine and water) are also involved in the coordination of Cu+2. The complexes have a distorted square pyramidal square-planar geometry. The compounds were characterized by FT-IR, electronic EPR spectroscopy, and magnetic methods. The nuclease activity studies confirm the complexes’ capacity to cleave the DNA molecule. Using a xanthine-xanthine oxydase system, the SOD mimetic activity of the complexes was demonstrated. Cytotoxicity studies were carried out on two tumor cell lines (HeLa, WM35) and on a normal cell line (HFL1) using the MTT method, with cisplatin used as a positive control. The antibacterial activity of the complexes was investigated against two Gram-positive and two Gram-negative bacteria, and compared with Amoxicillin and Norfloxacin using the disk diffusion method. Both complexes showed in vitro biological activity but the C2 complex was more active. A lack of in vivo toxicity was demonstrated for the C2 complex by performing hepatic, renal, and hematological studies on Swiss mice

    Red Oak (Quercus rubra L.) Fruits as Potential Alternative for Cocoa Powder: Optimization of Roasting Conditions, Antioxidant, and Biological Properties

    No full text
    Cocoa powder is a basic ingredient in the manufacture of chocolate, one of the most appreciated sweet products in the world for its sensory and nutritional properties. Furthermore, it displays a central nervous system stimulant effect. This study aimed to investigate acorn-derived powder as an alternative to cocoa powder, in order to obtain a chocolate that does not contain stimulants of the nervous system. Both the chocolate technological process and acorns roasting process (180 °C/25 min, 200 °C/20 min and 220 °C/15 min) were optimized to obtain acorn powder with an organoleptic profile as close as possible to that of cocoa powder. The chocolate sensory evaluation was performed by means of the hedonic test. Furthermore, the aqueous extracts obtained from the resulting powder were evaluated for total polyphenol content, and in vitro antimicrobial and antiproliferative properties. The results point out a high content of phenolic compounds (500.78–524.01 mg GAE/100 g); protection against microbial contamination based on the ability to inhibit a Gram-positive bacterium (Bacillus cereus) was also noticed. The aqueous acorn extracts were also able to reduce the cell viability of HFL-1 (human fetal lung fibroblast) and DLD-1 (colorectal adenocarcinoma) lines. This study suggests red oak (Quercus rubra) fruits as a potential alternative to cocoa powder in the manufacture of chocolate
    corecore