15 research outputs found
When Is a Principal Charged With an Agent’s Knowledge?
Question: Detecting species presence in vegetation and making visual assessment of abundances involve a certain amount of skill, and therefore subjectivity. We evaluated the magnitude of the error in data, and its consequences for evaluating temporal trends. Location: Swedish forest vegetation. Methods: Vegetation data were collected independently by two observers in 342 permanent 100-m2 plots in mature boreal forests. Each plot was visited by one observer from a group of 36 and one of two quality assessment observers. The cover class of 29 taxa was recorded, and presence/absence for an additional 50. Results: Overall, one third of each occurrence was missed by one of the two observers, but with large differences among species. There were more missed occurrences at low abundances. Species occurring at low abundance when present tended to be frequently overlooked. Variance component analyses indicated that cover data on 5 of 17 species had a significant observer bias. Observer-explained variance was < 10% in 15 of 17 species. Conclusion: The substantial number of missed occurrences suggests poor power in detecting changes based on presence/absence data. The magnitude of observer bias in cover estimates was relatively small, compared with random error, and therefore potentially analytically tractable. Data in this monitoring system could be improved by a more structured working model during field work.Original publication: Milberg, P., Bergstedt, J., Fridman, J., Odell, G & Westerberg, L., Systematic and random variation in vegetation monitoring data, 2008, Journal of Vegetation Science, (19), 633-644. http://dx.doi.org/10.3170/2008-8-18423. Copyright: Opulus Press, http://www.opuluspress.se/index.ph
Improving the efficiency and accuracy of evaluating aridland riparian habitat restoration using unmanned aerial vehicles
Unmanned Aerial Vehicles (UAVs) offer new opportunities for accurate, repeatable vegetation assessments, which are needed to adaptively manage restored habitat. We used UAVs, ground surveys, and satellite imagery to evaluate vegetation metrics for three riparian restoration sites along the Colorado River in Mexico and we compared the data accuracy and efficiency (cost and time requirements) between the three methods. We used an off-the-shelf UAV coupled with a multispectral sensor to determine Normalized Difference Vegetation Index (NDVI) and vegetation cover. We were unable to accurately classify vegetation by individual species, but by grouping riparian species of interest (cottonwood-willow, mesquite, shrubs), we achieved high overall model accuracies of 87–96% across sites (Kappa = 0.82–0.95). Producer’s and user’s accuracies were moderate to high for target vegetation classes (69–100%). UAV and ground-survey vegetation percent cover differed due to differences in methodologies (UAVs measure aerial cover; ground surveys measure foliar cover) and sources of error for each method. Correlations between UAV and ground survey vegetation cover were moderate (rs(90) = 0.24–0.58, p < 0.05). UAV NDVI (0.50–0.61) was significantly higher than Landsat NDVI (0.40–0.45) for all sites (p < 0.0001), likely due to presence of shadows with high NDVI values in UAV imagery. UAV NDVI, Landsat NDVI and UAV total vegetation cover were strongly correlated (rs(90) = 0.72–0.85, p < 0.05). UAV surveys were more labor- and cost- intensive than ground surveys in the first year, but were slightly less so in the second year. We conclude that UAVs can provide efficient, accurate assessments of riparian vegetation, which can be used in restoration site management. Due to UAV limitations to assess vegetation in a multi-layered canopy and inability to classify individual riparian species with similar spectral signals, we recommend a combined approach of UAV and ground surveys.Our Enterprise Rent-A-Car FoundationOpen access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]