42 research outputs found

    Piceatannol, a Dietary Polyphenol, Alleviates Adipose Tissue Loss in Pre-Clinical Model of Cancer-Associated Cachexia via Lipolysis Inhibition

    Get PDF
    Cancer-associated cachexia (CAC) is the nutrition-independent loss of lean muscle and adipose tissues, and results in reduced chemotherapy effectiveness and increased mortality. Preventing adipose loss is considered a key target in the early stages of cachexia. Lipolysis is considered the central driver of adipose loss in CAC. We recently found that piceatannol, but not its analogue resveratrol, exhibits an inhibitory effect on lipolysis. The objective of this study was to investigate the role of piceatannol in cancer-associated lipolysis and cachexia-induced weight loss. Cancer cell-induced lipolysis in adipocytes was stimulated using cancer-conditioned media (CCM) or co-culture with human pancreatic cancer cells and the cachexia-associated cytokines TNF-α and interleukin-6 in 3T3-L1 adipocytes. C26 colon carcinoma-bearing mice were modeled using CAC in vivo. Piceatannol reduced cancer-associated lipolysis by at least 50% in both CCM and cytokine-induced lipolysis in vitro. Further gene and protein analysis confirmed that piceatannol modulated the stability of lipolytic proteins. Moreover, piceatannol protected tumor-bearing mice against weight-loss in early stages of CAC largely through preserving adipose tissue, with no effect on survival. This study demonstrates the use of a dietary compound to preserve adipose in models of early stage CAC and provides groundwork for further investigation of piceatannol or piceatannol-rich foods as alternative medicine in the preservation of body fat mass and future CAC therapy

    Piceatannol, a Dietary Polyphenol, Alleviates Adipose Tissue Loss in Pre-Clinical Model of Cancer-Associated Cachexia via Lipolysis Inhibition

    Get PDF
    Cancer-associated cachexia (CAC) is the nutrition-independent loss of lean muscle and adipose tissues, and results in reduced chemotherapy effectiveness and increased mortality. Prevent- ing adipose loss is considered a key target in the early stages of cachexia. Lipolysis is considered the central driver of adipose loss in CAC. We recently found that piceatannol, but not its analogue resveratrol, exhibits an inhibitory effect on lipolysis. The objective of this study was to investigate the role of piceatannol in cancer-associated lipolysis and cachexia-induced weight loss. Cancer cell- induced lipolysis in adipocytes was stimulated using cancer-conditioned media (CCM) or co-culture with human pancreatic cancer cells and the cachexia-associated cytokines TNF-α and interleukin-6 in 3T3-L1 adipocytes. C26 colon carcinoma-bearing mice were modeled using CAC in vivo. Piceatannol reduced cancer-associated lipolysis by at least 50% in both CCM and cytokine-induced lipolysis in vitro. Further gene and protein analysis confirmed that piceatannol modulated the stability of lipolytic proteins. Moreover, piceatannol protected tumor-bearing mice against weight-loss in early stages of CAC largely through preserving adipose tissue, with no effect on survival. This study demonstrates the use of a dietary compound to preserve adipose in models of early stage CAC and provides groundwork for further investigation of piceatannol or piceatannol-rich foods as alternative medicine in the preservation of body fat mass and future CAC therapy

    Piceatannol, a Dietary Polyphenol, Alleviates Adipose Tissue Loss in Pre-Clinical Model of Cancer-Associated Cachexia via Lipolysis Inhibition

    Get PDF
    Cancer-associated cachexia (CAC) is the nutrition-independent loss of lean muscle and adipose tissues, and results in reduced chemotherapy effectiveness and increased mortality. Preventing adipose loss is considered a key target in the early stages of cachexia. Lipolysis is considered the central driver of adipose loss in CAC. We recently found that piceatannol, but not its analogue resveratrol, exhibits an inhibitory effect on lipolysis. The objective of this study was to investigate the role of piceatannol in cancer-associated lipolysis and cachexia-induced weight loss. Cancer cellinduced lipolysis in adipocytes was stimulated using cancer-conditioned media (CCM) or co-culture with human pancreatic cancer cells and the cachexia-associated cytokines TNF-α and interleukin-6 in 3T3-L1 adipocytes. C26 colon carcinoma-bearing mice were modeled using CAC in vivo. Piceatannol reduced cancer-associated lipolysis by at least 50% in both CCM and cytokine-induced lipolysis in vitro. Further gene and protein analysis confirmed that piceatannol modulated the stability of lipolytic proteins. Moreover, piceatannol protected tumor-bearing mice against weight-loss in early stages of CAC largely through preserving adipose tissue, with no effect on survival. This study demonstrates the use of a dietary compound to preserve adipose in models of early stage CAC and provides groundwork for further investigation of piceatannol or piceatannol-rich foods as alternative medicine in the preservation of body fat mass and future CAC therap

    Plk1 Phosphorylation of Orc2 and Hbo1 Contributes to Gemcitabine Resistance in Pancreatic Cancer

    Get PDF
    Although gemcitabine is the standard chemotherapeutic drug for treatment of pancreatic cancer, almost all patients eventually develop resistance to this agent. Previous studies identified Polo-like kinase 1 (Plk1) as the mediator of gemcitabine resistance, but the molecular mechanism remains unknown. In this study, we show that Plk1 phosphorylation of Orc2 and Hbo1 mediates the resistance to gemcitabine. We show that the level of Plk1 expression positively correlates with gemcitabine resistance, both in pancreatic cancer cells and xenograft tumors. Overexpression of Plk1 increases gemcitabine resistance, while inhibition of Plk1 sensitizes pancreatic cancer cells to gemcitabine treatment. To validate our findings, we show that inhibition of Plk1 sensitizes tumors to gemcitabine treatment in a mouse xenograft study. Mechanistically, we find that Plk1 phosphorylation of Orc2 maintains DNA replication on gemcitabine treatment. Furthermore, Plk1 phosphorylation of Hbo1 transcriptionally increases cFos expression and consequently elevates its target multidrug resistance 1 (MDR1), which was previously reported to confer chemotherapeutic drug resistance. Knockdown of cFos or MDR1 sensitizes gemcitabine-resistant cells to gemcitabine treatment. Finally, pancreatic cancer cells expressing Plk1-unphosphorylatable mutants of Orc2 or Hbo1 are more sensitive to gemcitabine than cells expressing wild-type Orc2 or Hbo1. In short, our study provides a mechanism for Plk1-mediated gemcitabine resistance, suggesting that Plk1 is a promising target for treatment of gemcitabine-resistant pancreatic cancer

    Amino Alkynylisoquinoline and Alkynylnaphthyridine Compounds Potently Inhibit Acute Myeloid Leukemia Proliferation in Mice

    Get PDF
    B ackground: Acute myeloid leukemia (AML) remains one of the most lethal, rarely cured cancers, despite decades of active development of AML therapeutics. Currently, the 5-year survival of AML patients is about 30% and for elderly patients, the rate drops to b10%. About 30% of AML patients harbor an activating mutation in the tyrosine kinase domain (TKD) of Fms-Like Tyrosine kinase 3 (FLT3) or a FLT3 internal tandem duplication (FLT3-ITD). In- hibitors of FLT3, such as Rydapt that was recently approved by the FDA, have shown good initial response but pa- tients often relapse due to secondary mutations in the FLT3 TKD, like D835Y and F691 L mutations. Methods: Alkynyl aminoisoquinoline and naphthyridine compounds were synthesized via Sonogashira coupling. The compounds were evaluated for their in vitro and in vivo effects on leukemia growth. Findings: The compounds inhibited FLT3 kinase activity at low nanomolar concentrations. The lead compound, HSN431, also inhibited Src kinase activity. The compounds potently inhibited the viability of MV4–11 and MOLM-14 AML cells with IC50 values b1 nM. Furthermore, the viability of drug-resistant AML cells harboring the D835Y and F691 L mutations were potently inhibited. In vivo efficacy studies in mice demonstrated that the compounds could drastically reduce AML proliferation in mice. Interpretation: Compounds that inhibit FLT3 and downstream targets like Src (for example HSN431) are good leads for development as anti-AML agents

    Radioluminescent nanoparticles for radiation-controlled release of drugs

    Get PDF
    The present work demonstrates a novel concept for intratumoral chemo-radio combination therapy for locally advanced solid tumors. For some locally advanced tumors, chemoradiation is currently standard of care. This combination treatment can cause acute and long term toxicity that can limit its use in older patients or those with multiple medical comorbidities. Intratumoral chemotherapy has the potential to address the problem of systemic toxicity that conventional chemotherapy suffers, and may, in our view, be a better strategy for treating certain locally advanced tumors. The present study proposes how intratumoral chemoradiation can be best implemented. The enabling concept is the use of a new chemotherapeutic formulation in which chemotherapy drugs (e.g., paclitaxel (PTX)) are co-encapsulated with radioluminecsnt nanoparticles (e.g., CaWO4 (CWO) nanoparticles (NPs)) within protective capsules formed by biocompatible/biodegradable polymers (e.g., poly(ethylene glycol)-poly(lactic acid) or PEG-PLA). This drug-loaded polymer-encapsulated radioluminescent nanoparticle system can be locally injected in solution form into the patient's tumor before the patient receives normal radiotherapy (e.g., 30–40 fractions of 2–3 Gy daily X-ray dose delivered over several weeks for locally advanced head and neck tumors). Under X-ray irradiation, the radioluminescent nanoparticles produce UV-A light that has a radio-sensitizing effect. These co-encapsulated radioluminescent nanoparticles also enable radiation-triggered release of chemo drugs from the polymer coating layer. The non-toxic nature (absence of dark toxicity) of this drug-loaded polymer-encapsulated radioluminescent nanoparticle (“PEG-PLA/CWO/PTX”) formulation was confirmed by the MTT assay in cancer cell cultures. A clonogenic cell survival assay confirmed that these drug-loaded polymer-encapsulated radioluminescent nanoparticles significantly enhance the cancer cell killing effect of radiation therapy. In vivo study validated the efficacy of PEG-PLA/CWO/PTX-based intratumoral chemo-radio therapy in mouse tumor xenografts (in terms of tumor response and mouse survival). Results of a small-scale NP biodistribution (BD) study demonstrate that PEG-PLA/CWO/PTX NPs remained at the tumor sites for a long period of time (> 1 month) following direct intratumoral administration. A multi-compartmental pharmacokinetic model (with rate constants estimated from in vitro experiments) predicts that this radiation-controlled drug release technology enables significant improvements in the level and duration of drug availability within the tumor (throughout the typical length of radiation treatment, i.e., > 1 month) over conventional delivery systems (e.g., PEG-PLA micelles with no co-encapsulated CaWO4, or an organic liquid, e.g., a 50:50 mixture of Cremophor EL and ethanol, as in Taxol), while it is capable of maintaining the systemic level of the chemo drug far below the toxic threshold limit over the entire treatment period. This technology thus has the potential to offer a new therapeutic option that has not previously been available for patients excluded from conventional chemoradiation protocols

    Protein arginine methyltransferase 5 promotes pICln-dependent androgen receptor transcription in castration-resistant prostate cancer

    Get PDF
    The majority of advanced prostate cancer therapies aim to inhibit androgen receptor (AR) signaling. However, AR reactivation inevitably drives disease progression to castration-resistant prostate cancer (CRPC). Here we demonstrate that protein arginine methyltransferase 5 (PRMT5) functions as an epigenetic activator of AR transcription in CRPC, requiring cooperation with a methylosome subunit pICln. In vitro and in xenograft tumors in mice, targeting PRMT5 or pICln suppressed growth of CRPC cells. Full-length AR and AR-V7 transcription activation required both PRMT5 and pICln but not MEP50. This activation of transcription was accompanied by PRMT5-mediated symmetric dimethylation of H4R3 at the proximal AR promoter. Further, knockdown of PRMT5 abolished the binding of pICln (but not vice versa) to the AR proximal promoter region, suggesting that PRMT5 recruits pICln to the AR promoter to activate AR transcription. Differential gene expression analysis in 22Rv1 cells confirmed that PRMT5 and pICln both regulate the androgen signaling pathway. In addition, PRMT5 and pICln protein expression positively correlated with AR and AR-V7 protein expression in CRPC tissues and their expression was highly correlated at the mRNA level across multiple publicly available CRPC datasets. Our results suggest that targeting PRMT5 or pICln may be explored as a novel therapy for CRPC treatment by suppressing expression of AR and AR splice variants to circumvent AR reactivation. SIGNIFICANCE: This study provides evidence that targeting PRMT5 can eliminate expression of AR and can be explored as a novel therapeutic approach to treat metastatic hormone-naïve and castration-resistant prostate cancer

    Tumor-responsive, multifunctional CAR-NK cells cooperate with impaired autophagy to infiltrate and target glioblastoma

    Get PDF
    Tumor antigen heterogeneity, a severely immunosuppressive tumor microenvironment (TME) and lymphopenia resulting in inadequate immune intratumoral trafficking have rendered glioblastoma (GBM) highly resistant to therapy. As a result, GBM immunotherapies have failed to demonstrate sustained clinical improvements in patient overall survival (OS). To overcome these obstacles, here we describe a novel, sophisticated combinatorial platform for GBM: the first multifunctional immunotherapy based on genetically-engineered, human NK cells bearing multiple anti-tumor functions, including local tumor responsiveness, that addresses key drivers of GBM resistance to therapy: antigen escape, poor immune cell homing, and immunometabolic reprogramming of immune responses. We engineered dual-specific CAR-NK cells to bear a third functional moiety that is activated in the GBM TME and addresses immunometabolic suppression of NK cell function: a tumor-specific, locally-released antibody fragment which can inhibit the activity of CD73 independently of CAR signaling and decrease the local concentration of adenosine. The multifunctional human NK cells targeted patient-derived GBM xenografts, demonstrated local tumor site specific activity in the tissue and potently suppressed adenosine production. We also unveil a complex reorganization of the immunological profile of GBM induced by inhibiting autophagy. Pharmacologic impairment of the autophagic process not only sensitized GBM to antigenic targeting by NK cells, but promoted a chemotactic profile favorable to NK infiltration. Taken together, our study demonstrates a promising new NK cell-based combinatorial strategy that can target multiple clinically-recognized mechanisms of GBM progression simultaneously

    Folate Receptor Beta Designates Immunosuppressive Tumor-Associated Myeloid Cells That Can Be Reprogrammed with Folate-Targeted Drugs

    Get PDF
    Although immunotherapies of tumors have demonstrated promise for altering the progression of malignancies, immunotherapies have been limited by an immunosuppressive tumor microenvironment (TME) that prevents infiltrating immune cells from performing their anticancer functions. Prominent among immunosuppressive cells are myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) that inhibit T cells via release of immunosuppressive cytokines and engagement of checkpoint receptors. Here, we explore the properties of MDSCs and TAMs from freshly isolated mouse and human tumors and find that an immunosuppressive subset of these cells can be distinguished from the nonimmunosuppressive population by its upregulation of folate receptor beta (FRβ) within the TME and its restriction to the TME. This FRβ+ subpopulation could be selectively targeted with folate-linked drugs. Delivery of a folate-targeted TLR7 agonist to these cells (i) reduced their immunosuppressive function, (ii) increased CD8+ T-cell infiltration, (iii) enhanced M1/M2 macrophage ratios, (iv) inhibited tumor growth, (v) blocked tumor metastasis, and (vi) improved overall survival without demonstrable toxicity. These data reveal a broadly applicable strategy across tumor types for reprogramming MDSCs and TAMs into antitumorigenic immune cells using a drug that would otherwise be too toxic to administer systemically. The data also establish FRβ as the first marker that distinguishes immunosuppressive from nonimmunosuppressive subsets of MDSCs and TAMs. Because all solid tumors accumulate MDSCs and TAMs, a general strategy to both identify and reprogram these cells should be broadly applied in the characterization and treatment of multiple tumors

    Gene profiling of the erythro- and megakaryoblastic leukaemias induced by the Graffi murine retrovirus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute erythro- and megakaryoblastic leukaemias are associated with very poor prognoses and the mechanism of blastic transformation is insufficiently elucidated. The murine Graffi leukaemia retrovirus induces erythro- and megakaryoblastic leukaemias when inoculated into NFS mice and represents a good model to study these leukaemias.</p> <p>Methods</p> <p>To expand our understanding of genes specific to these leukaemias, we compared gene expression profiles, measured by microarray and RT-PCR, of all leukaemia types induced by this virus.</p> <p>Results</p> <p>The transcriptome level changes, present between the different leukaemias, led to the identification of specific cancerous signatures. We reported numerous genes that may be potential oncogenes, may have a function related to erythropoiesis or megakaryopoiesis or have a poorly elucidated physiological role. The expression pattern of these genes has been further tested by RT-PCR in different samples, in a Friend erythroleukaemic model and in human leukaemic cell lines.</p> <p>We also screened the megakaryoblastic leukaemias for viral integrations and identified genes targeted by these integrations and potentially implicated in the onset of the disease.</p> <p>Conclusions</p> <p>Taken as a whole, the data obtained from this global gene profiling experiment have provided a detailed characterization of Graffi virus induced erythro- and megakaryoblastic leukaemias with many genes reported specific to the transcriptome of these leukaemias for the first time.</p
    corecore