108 research outputs found
Hormone Replacement Therapy and Risk for Neurodegenerative Diseases
Over the past two decades, there has been a significant amount of research investigating the risks and benefits of hormone replacement therapy (HRT) with regards to neurodegenerative disease. Here, we review basic science studies, randomized clinical trials, and epidemiological studies, and discuss the putative neuroprotective effects of HRT in the context of Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and HIV-associated neurocognitive disorder. Findings to date suggest a reduced risk of Alzheimer's disease and improved cognitive functioning of postmenopausal women who use 17β-estradiol. With regards to Parkinson's disease, there is consistent evidence from basic science studies for a neuroprotective effect of 17β-estradiol; however, results of clinical and epidemiological studies are inconclusive at this time, and there is a paucity of research examining the association between HRT and Parkinson's-related neurocognitive impairment. Even less understood are the effects of HRT on risk for frontotemporal dementia and HIV-associated neurocognitive disorder. Limits to the existing research are discussed, along with proposed future directions for the investigation of HRT and neurodegenerative diseases
Molecular epigenetics, chromatin, and NeuroAIDS/HIV: Translational implications
We describe current research that applies epigenetics to a novel understanding of the immuno-neuropathogenesis of HIV-1 viral infection and NeuroAIDS. We propose the hypothesis that HIV-1 alters the structure-function relationship of chromatin,
coding DNA and non-coding DNA, including RNA transcribed from these regions resulting in pathogenesis in AIDS, drug abuse, and NeuroAIDS. We discuss the general implications of molecular epigenetics with special emphasis on drug abuse, bar-codes,
pyknons, and miRNAs for translational and clinical research. We discuss the application of the recent recursive algorithm of biology to this field and propose to synthesize the Genomic and Epigenomic views into a holistic approach of HoloGenomics
Molecular epigenetics, chromatin, and NeuroAIDS/HIV: Immunopathological implications
Epigenetics studies factors related to the organism and environment that modulate inheritance from generation to generation. Molecular epigenetics examines non-coding DNA (ncdDNA) vs. coding DNA (cdDNA), and
pertains to every domain of physiology, including immune and brain function. Molecular cartography, including genomics, proteomics, and interactomics, seeks to recognize and to identify the multi-faceted and
intricate array of interacting genes and gene products that characterize the function and specialization of each individual cell in the context of cell-cell interaction, tissue, and organ function. Molecular
cartography, epigenetics, and chromatin assembly, repair and remodeling (CARR), which, together with the RNA interfering signaling complex (RISC), is responsible for much of the control and regulation of gene
expression, intersect
Neuropathology of COVID-19 (neuro-COVID): clinicopathological update
Coronavirus disease 2019 (COVID-19) is emerging as the greatest public health crisis in the early 21st century. Its causative agent, Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), is an enveloped single-stranded positive-sense ribonucleic acid virus that enters cells via the angiotensin converting enzyme 2 receptor or several other receptors. While COVID-19 primarily affects the respiratory system, other organs including the brain can be involved. In Western clinical studies, relatively mild neurological dysfunction such as anosmia and dysgeusia is frequent (~70-84%) while severe neurologic disorders such as stroke (~1-6%) and meningoencephalitis are less common. It is unclear how much SARS-CoV-2 infection contributes to the incidence of stroke given co-morbidities in the affected patient population. Rarely, clinically-defined cases of acute disseminated encephalomyelitis, Guillain-Barré syndrome and acute necrotizing encephalopathy have been reported in COVID-19 patients. Common neuropathological findings in the 184 patients reviewed include microglial activation (42.9%) with microglial nodules in a subset (33.3%), lymphoid inflammation (37.5%), acute hypoxic-ischemic changes (29.9%), astrogliosis (27.7%), acute/subacute brain infarcts (21.2%), spontaneous hemorrhage (15.8%), and microthrombi (15.2%). In our institutional cases, we also note occasional anterior pituitary infarcts. COVID-19 coagulopathy, sepsis, and acute respiratory distress likely contribute to a number of these findings. When present, central nervous system lymphoid inflammation is often minimal to mild, is detected best by immunohistochemistry and, in one study, indistinguishable from control sepsis cases. Some cases evince microglial nodules or neuronophagy, strongly supporting viral meningoencephalitis, with a proclivity for involvement of the medulla oblongata. The virus is detectable by reverse transcriptase polymerase chain reaction, immunohistochemistry, or electron microscopy in human cerebrum, cerebellum, cranial nerves, olfactory bulb, as well as in the olfactory epithelium; neurons and endothelium can also be infected. Review of the extant cases has limitations including selection bias and limited clinical information in some cases. Much remains to be learned about the effects of direct viral infection of brain cells and whether SARS-CoV-2 persists long-term contributing to chronic symptomatology
Disrupted cerebral metabolite levels and lower nadir CD4+ counts are linked to brain volume deficits in 210 HIV-infected patients on stable treatmentpatients on stable treatment
AbstractCognitive impairment and brain injury are common in people with HIV/AIDS, even when viral replication is effectively suppressed with combined antiretroviral therapies (cART). Metabolic and structural abnormalities may promote cognitive decline, but we know little about how these measures relate in people on stable cART. Here we used tensor-based morphometry (TBM) to reveal the 3D profile of regional brain volume variations in 210 HIV+ patients scanned with whole-brain MRI at 1.5T (mean age: 48.6±8.4years; all receiving cART). We identified brain regions where the degree of atrophy was related to HIV clinical measures and cerebral metabolite levels assessed with magnetic resonance spectroscopy (MRS). Regional brain volume reduction was linked to lower nadir CD4+ count, with a 1–2% white matter volume reduction for each 25-point reduction in nadir CD4+. Even so, brain volume measured by TBM showed no detectable association with current CD4+ count, AIDS Dementia Complex (ADC) stage, HIV RNA load in plasma or cerebrospinal fluid (CSF), duration of HIV infection, antiretroviral CNS penetration-effectiveness (CPE) scores, or years on cART, after controlling for demographic factors, and for multiple comparisons. Elevated glutamate and glutamine (Glx) and lower N-acetylaspartate (NAA) in the frontal white matter, basal ganglia, and mid frontal cortex — were associated with lower white matter, putamen and thalamus volumes, and ventricular and CSF space expansion. Reductions in brain volumes in the setting of chronic and stable disease are strongly linked to a history of immunosuppression, suggesting that delays in initiating cART may result in imminent and irreversible brain damage
HIV and COVID-19: two pandemics with significant (but different) central nervous system complications
Human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause significant neurologic disease. Central nervous system (CNS) involvement of HIV has been extensively studied, with well-documented invasion of HIV into the brain in the initial stage of infection, while the acute effects of SARS-CoV-2 in the brain are unclear. Neuropathologic features of active HIV infection in the brain are well characterized whereas neuropathologic findings in acute COVID-19 are largely non-specific. On the other hand, neuropathologic substrates of chronic dysfunction in both infections, as HIV-associated neurocognitive disorders (HAND) and post-COVID conditions (PCC)/long COVID are unknown. Thus far, neuropathologic studies on patients with HAND in the era of combined antiretroviral therapy have been inconclusive, and autopsy studies on patients diagnosed with PCC have yet to be published. Further longitudinal, multidisciplinary studies on patients with HAND and PCC and neuropathologic studies in comparison to controls are warranted to help elucidate the mechanisms of CNS dysfunction in both conditions
Microbial Translocation Is Associated with Increased Monocyte Activation and Dementia in AIDS Patients
Elevated plasma lipopolysaccharide (LPS), an indicator of microbial translocation from the gut, is a likely cause of systemic immune activation in chronic HIV infection. LPS induces monocyte activation and trafficking into brain, which are key mechanisms in the pathogenesis of HIV-associated dementia (HAD). To determine whether high LPS levels are associated with increased monocyte activation and HAD, we obtained peripheral blood samples from AIDS patients and examined plasma LPS by Limulus amebocyte lysate (LAL) assay, peripheral blood monocytes by FACS, and soluble markers of monocyte activation by ELISA. Purified monocytes were isolated by FACS sorting, and HIV DNA and RNA levels were quantified by real time PCR. Circulating monocytes expressed high levels of the activation markers CD69 and HLA-DR, and harbored low levels of HIV compared to CD4+ T-cells. High plasma LPS levels were associated with increased plasma sCD14 and LPS-binding protein (LBP) levels, and low endotoxin core antibody levels. LPS levels were higher in HAD patients compared to control groups, and were associated with HAD independently of plasma viral load and CD4 counts. LPS levels were higher in AIDS patients using intravenous heroin and/or ethanol, or with Hepatitis C virus (HCV) co-infection, compared to control groups. These results suggest a role for elevated LPS levels in driving monocyte activation in AIDS, thereby contributing to the pathogenesis of HAD, and provide evidence that cofactors linked to substance abuse and HCV co-infection influence these processes
Recommended from our members
Neurobehavioral Manifestations of Human Immunodeficiency Virus/AIDS Diagnosis and Treatment
Behavioral disorders are common in persons infected with human immunodeficiency virus (HIV). The differential includes preexisting psychiatric diseases, substance abuse, direct effects of HIV infection, opportunistic infection, and the adverse effects of medical therapies. Many patients have more than one contributing or comorbid problem to explain these behavioral changes. The differential should always include consideration of psychosocial, genetic, and medical causes of disease. Treatment strategies must take into account the coadministration of antiretroviral therapy and the specific neurologic problems common in patients infected with HIV
- …