35 research outputs found

    On the UK smart metering system and value of data for distribution system operators

    Get PDF

    On the UK smart metering system and value of data for distribution system operators.

    Get PDF
    The Smart Metering Implementation Programme (SMIP) is an ongoing energy infrastructure upgrade that is delivering 53 million smart electricity and gas meters for homes and small businesses in the UK. The programme is expected to deliver economic benefits for customers, energy suppliers and the national grid. The programme is also enabling the transition to a more efficient, and flexible smart grid as well as the decarbonisation of the energy sector to achieve the Net Zero carbon emissions goal by 2050. However, with the immense data generated by smart meters connected to the low voltage distribution networks, further technical benefits can be unlocked. This paper provides an overview of the smart meter system in the UK with its originally intended benefits. Then the physical, functional, interface and data specifications of the smart meters are detailed to give an idea of the possible uses of these data. Finally, the paper discusses the technical benefits that are possible from combining the smart meters’ data with industry 4.0 technologies such as decision support systems for network reinforcement and investment, active monitoring and management of the network and its assets, and data-driven digital twins of the distribution networks

    Fault detection and localisation in LV distribution networks using a smart meter data-driven digital twin.

    Get PDF
    Modern solutions for precise fault localisation in Low Voltage (LV) Distribution Networks (DNs) often rely on costly tools such as the micro-Phasor Measurement Unit ( PMU), which is potentially impractical for the large number of nodes in LVDNs. This paper introduces a novel fault detection technique using a distribution network digital twin without the use of PMUs. The Digital Twin (DT) integrates data from Smart Meters (SMs) and network topology to create an accurate replica. In using SM voltage-magnitude readings, the pre-built twin compiles a database of fault scenarios and matches them with their unique voltage fingerprints. However, this SM-based voltage-only approach shows only a 70.7% accuracy in classifying fault type and location. Therefore, this research suggests using the cables' Currents Symmetrical Component (CSC). Since SMs do not provide direct current data, a Machine Learning (ML)-based regression method is proposed to estimate the cables' currents in the DT. Validation is performed on a 41-node LV distribution feeder in the Scottish network provided by the industry partner Scottish Power Energy Networks (SPEN). The results show that the current estimation regressor significantly improves fault localisation and identification accuracy to 95.77%. This validates the crucial role of a DT in distribution networks, thus enabling highly accurate fault detection when using SM voltage-only data, with further refinements being conducted through estimations of CSC. The proposed DT offers automated fault detection, thus enhancing customer connectivity and maintenance team dispatch efficiency without the need for additional expensive PMU on a densely-noded distribution network

    Few-shot Classifier GAN

    Get PDF
    Fine-grained image classification with a few-shot classifier is a highly challenging open problem at the core of a numerous data labeling applications. In this paper, we present Few-shot Classifier Generative Adversarial Network as an approach for few-shot classification. We address the problem of few-shot classification by designing a GAN in which the discriminator and the generator compete to output labeled data in any case. In contrast to previous methods, our techniques generate then classify images into multiple fake or real classes. A key innovation of our adversarial approach is to allow fine-grained classification using multiple fake classes with semi-supervised deep learning. A major strength of our techniques lies in its label-agnostic characteristic, in the sense that the system handles both labeled and unlabeled data during training. We validate quantitatively our few-shot classifier on the MNIST and SVHN datasets by varying the ratio of labeled data over unlabeled data in the training set. Our quantitative analysis demonstrates that our techniques produce better classification performance when using multiple fake classes and larger amount of unlabelled data

    The effects of measurement error and testing frequency on the fitness-fatigue model applied to resistance training: a simulation approach.

    Get PDF
    This study investigated the effects of measurement error and testing frequency on prediction accuracy of the standard fitness-fatigue model. A simulation-based approach was used to systematically assess measurement error and frequency inputs commonly used when monitoring the training of athletes. Two hypothetical athletes (intermediate and advanced) were developed and realistic training loads and daily ‘true’ power values were generated using the fitness-fatigue model across 16 weeks. Simulations were then completed by adding Gaussian measurement errors to true values with mean 0 and set standard deviations to recreate more and less reliable measurement practices used in real-world settings. Errors were added to the model training phase (weeks 1–8) and sampling of data was used to recreate different testing frequencies (every day to once per week) when obtaining parameter estimates. In total, 210 sets of simulations (N = 104 iterations) were completed using an iterative hill-climbing optimisation technique. Parameter estimates were then combined with training loads in the model testing phase (weeks 9–16) to quantify prediction errors. Regression analyses identified positive associations between prediction errors and the linear combination of measurement error and testing frequency (R2adj =0.87–0.94). Significant model improvements (P < 0.001) were obtained across all scenarios by including an interaction term demonstrating greater deleterious effects of measurement error at low testing frequencies.The findings of this simulation study represent a lower-bound case and indicate that in real-world settings, where a fitness-fatigue model is used to predict training response, measurement practices that generate coefficients of variation greater than ≈4% will not provide satisfactory results

    Learning to self-manage by intelligent monitoring, prediction and intervention

    Get PDF
    Despite the growing prevalence of multimorbidities, current digital self-management approaches still prioritise single conditions. The future of outof- hospital care requires researchers to expand their horizons; integrated assistive technologies should enable people to live their life well regardless of their chronic conditions. Yet, many of the current digital self-management technologies are not equipped to handle this problem. In this position paper, we suggest the solution for these issues is a model-aware and data-agnostic platform formed on the basis of a tailored self-management plan and three integral concepts - Monitoring (M) multiple information sources to empower Predictions (P) and trigger intelligent Interventions (I). Here we present our ideas for the formation of such a platform, and its potential impact on quality of life for sufferers of chronic conditions

    Toward video tampering exposure: inferring compression parameters from pixels.

    Get PDF
    Video tampering detection remains an open problem in the field of digital media forensics. Some existing methods focus on recompression detection because any changes made to the pixels of a video will require recompression of the complete stream. Recompression can be ascertained whenever there is a mismatch between compression parameters encoded in the syntax elements of the compressed bitstream and those derived from the pixels themselves. However, deriving compression parameters directly and solely from the pixels is not trivial. In this paper we propose a new method to estimate the H.264/AVC quantisation parameter (QP) in frame patches from raw pixels using Convolutional Neural Networks (CNN) and class composition. Extensive experiments show that QP of key-frames can be estimated using CNN. Results also show that accuracy drops for predicted frames. These results open new, interesting research directions in the domain of video tampering/forgery detection
    corecore