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Abstract. Video tampering detection remains an open problem in the
field of digital media forensics. Some existing methods focus on recom-
pression detection because any changes made to the pixels of a video
will require recompression of the complete stream. Recompression can
be ascertained whenever there is a mismatch between the compression
parameters encoded in the syntax elements within the compressed bit-
stream and those derived from the pixels themselves. However, deriving
compression parameters directly and solely from the pixels is not triv-
ial. In this paper we propose a new method to estimate the H.264/AVC
quantisation parameter (QP) in frame patches from raw pixels using
Convolutional Neural Networks (CNN) and class composition. Exten-
sive experiments show that QP of key-frames can be estimated using
CNN. Results also show that accuracy drops for predicted frames. These
results open new interesting research direction in the domain of video
tampering/forgery detection.

Keywords: CNN · Compression · video tampering detection

1 Introduction

In the age of fake news and falsified video, the detection of video tampering is
becoming an increasingly important area of research. Techniques such as [1, 2]
demonstrate how the latest machine learning techniques can convincingly alter
video content by changing faces or weather conditions, yet detection of such
tampering remains an open field. Detection methods can be active or passive [3,
4], but, since many existing videos are unprepared for active tampering detec-
tion, passive detection methods are more relevant. Passive tampering detection
can be categorised into recompression, region tampering and inter-frame forgery
[3]. Region tampering includes copy-move attacks where the copied region can
come from the same frame in the video, similar to image copy-move [5] or from
a different frame in the same video [6]. Splicing and inpainting are variations
on region tampering. Inter-frame forgery is where an integer number of frames
is added, deleted or shuffled. Regardless of the editing method, however, any
tampering at the pixel level of a compressed video requires recompression of the
video bitstream [7, 8], so of these three methods, recompression detection is the
most versatile.
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Video compression is prevalent in digital society. The vast majority of online
video has been compressed using lossy formats such as H.264/AVC [9] or MPEG2
[10]. These formats have been designed with the human visual system in mind
and the effects of compression remain largely invisible to human eyes. It has been
shown that compression does impact classification performance of convolutional
neural network (CNN) classifiers [11] and pre-existing compression in original
source images may even have caused these effects to be understated. If CNN
classifiers are passively affected by compression, it is reasonable to use them
to actively detect the level of compression directly from pixels. Moreover, any
method of measuring compression could be utilised to create an ensemble CNN
classifier which could maximise accuracy while accounting for recompression.
Accurate QP estimation could be used to enhance the performance of classifiers
across differing quality levels.

An intuitive indication of recompression is where the Quantisation Parameter
(QP) encoded within the bitstream fails to match the value estimated from the
pixels. This is most obvious to human eyes when the bitrate and syntax elements
of the bitstream imply high quality video data but the pixel content exhibits vis-
ible compression artifacts such as blockiness. The human visual system cannot
distinguish between close QP levels, however and objective methods of mea-
suring QP from pixels are required. An ideal QP estimator would also operate
accurately over small patches to enable localisation of tampered regions because
this is an advancing area of research [12, 4]. For singly compressed frames, es-
timated QP can be verified by encoded bitstream syntax elements. In multiply
compressed video, there will be mismatches between estimated QP and syntax
elements, and differing QP patterns may be detected over spatially or temporally
tampered regions.

This work takes a step towards utilising compression parameters derived
directly from the pixels themselves. We show CNNs can be trained to estimate
QP for stand alone key frame patches with reasonable accuracy. Original datasets
are synthesised from uncompressed sources and used to train CNNs to identify
the QP used to encode the data. We train a CNN to estimate the quantisation
parameter of a pixel patch singly encoded using H.264/AVC. The accuracy of our
model is examined and contributory factors to errors, including the reasons for
lower accuracy on predicted frames, are explored. Class composition is also used
to improve accuracy in predicted frames. Unlike [13], where decomposition of
a original dataset classes into smaller subclasses improved accuracy in random
forest classification, we combine adjacent classes into larger superclasses. We
find that training a CNN on superclasses improves accuracy. We explain how
our model works through examination of the network weights.

2 Background and related work

The human visual system is adequate to detect some compression effects and
can quantify ”no reference” image and video quality [14, 15]. The source of video
compression visual effects can be found by examining transformations used in
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compression standards. A video sequence comprises key or intra frames, which
provide access points into the sequence, and predicted frames which rely on data
from previously encoded frames. In H.264/AVC and MPEG-2, frames are divided
into ”macroblocks”: blocks of 16x16 pixels. For non-predicted data, the pixel data
itself is transformed into the frequency domain using Discrete Cosine Transforms
(DCT), quantised and variable length encoded for transmission. For predicted
data, a suitable patch of reference pixels is located, then the difference between
current and reference data is transformed, quantised and encoded. Quantisation
is performed as in Equation 1 where δ is DCT coefficients of a macroblock or
residual, C is the compressed coefficients and Qs represents the quantisation
step as indexed by the quantisation parameter [16].

C = round(
δ

Qs
) (1)

Higher QP indexes larger Qs and means more frequency coefficients are fil-
tered out entirely. An increase in QP often manifests visually as an increased
”blockiness”; that is, discrete regions of macroblocks consisting single or few fre-
quency coefficients. Most often, low frequencies have higher signal amplitudes,
so sharp edges persist while textures are reduced. In key frames, macroblock
edges align uniformly within the frame. This visual effect was more apparent in
earlier video compression standards [10] where non-integer DCTs forced regu-
lar inclusion of key frames. Periodic key frames limited drift between encoder
and decoder but were visible as a pulse in the sequence as accumulated round-
ing errors were reset by the key frame. The integer transforms introduced in
H.264/AVC [9] reduced the role of key frames to access points in the bitstream
and consequently reduced the visible pulse in video sequences. HEVC [17] de-
fines other techniques to reduce visible compression artifacts but is yet to be
fully adopted. H.264/AVC is more common in the wild. Compression artifacts
are not restricted to artificial block edges, however, and can also manifest as a
lack of specific frequency detail or as banding in areas of smooth colour/intensity
transition.

Traditional methods of recompression detection rely on the identification of
patterns in frequency domain bitstream syntax elements. The authors of [18]
rely on Benford’s distribution of DCT coefficients and support vector machines
to detect double compression of intra frames. In [19] multiple compression is
detected in H.264/AVC encoded videos but the compression modes are heavily
restricted and the methods do not differentiate between QP that are less than
two steps apart.

As part of an investigation into using deep neural networks to determine im-
age quality, Bosse et al [14] developed a method to estimate QP of HEVC frames
directly from pixels. They achieved accurate results for average QP estimation
over a complete frame using a patch-wise technique and dataset synthesised from
UCID [20]. The method was applied to intra (key) frames only. QP estimation
was framed as a regression problem and the dataset used to train the network
contained labelled patches compressed with all possible QPs. Although the av-
eraged QP prediction for a complete frame was accurate, a heatmap showing
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individual patch contributions displayed great variation between patches. If QP
estimation is to be successful as a region-tampering detector, it should be as ac-
curate as possible over small regions. Moreover, a QP estimator for video must
also handle predicted frames.

This work examines QP estimation in the context of patches taken from
H.264/AVC video sequences. H.264/AVC is currently one of the most popular
video compression standards and is used on YouTube, broadcast video and public
datasets. A CNN is trained to classify frame patches from a video sequence using
their quantisation parameters as labels. Unlike [14], we also investigate predicted
frames in a video sequence.

3 Methods

3.1 Datasets

When examining the effects of compression, is vital to start with unprocessed
data. Standard YUV 4:2:0 sequences from xiph.org are commonly used for video
compression quality analysis3. Strictly speaking, YUV 4:2:0 is a compressed
format due to reduced resolution of the colour channels but it is widely used in
video compression. Uncompressed YUV 4:4:4, is not as popular. The sequences
from xiph.org come in various dimensions and cover a wide variety of subjects
from studio-shot sequences to outdoor scenes. All sequences are single camera,
continuous scenes. Camera motion varies between sequences but frames from a
single sequence will be correlated.

A large amount of data is required to train a neural network and uncorrelated
data will produce a more generalised network. It is possible to use still image data
as single frame sequences when focussing on spatial compression artifacts and
excluding temporal compression. For this purpose, the images of UCID [20] were
used. UCID consists of uncompressed images which are either 512x384 pixels or
384x512 pixels and cover a wide variety of subject matter. All are natural scenes
and taken with the same camera. Of the original reported 1338 images in the
dataset, only 882 were available for download4. Using a dataset of single images
is not ideal since predicted frames cannot be examined. However it allows for
a greater variety of pixel combinations in a smaller dataset because individual
images are uncorrelated. Each image from UCID was regarded as a single frame
video sequence and encoded accordingly as an intra frame.

Table 1. A summary of original datasets
Name Source Length Dimensions Key frames

CIFvid xiph.org 18 videos 352x288 1/250
CIFintra xiph.org 18 videos 352x288 all
AllVid xiph.org 44 videos 176x144 to 1920x1080 1/250
AllIntra xiph.org 44 videos 176x144 to 1920x1080 all
UCID UCID [20] 882 single frames 512x384 or 384x512 pixels all

Table 1 gives a summary of the original datasets. Each video sequence was
compressed using the open source H.264/AVC encoder x264 and one of a range

3 Available from Derf’s Media Collection: https://media.xiph.org/video/derf/
4 UCID images from http://jasoncantarella.com/downloads/ucid.v2.tar.gz
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Table 2. A summary of synthesised datasets
Name Source Patch Size Spatial Stride Temp. Stride Train Patches Test

Patches

AllVid 80 AllVid 80 80(train); 40(test) 40 156592 8400
AllIntra 80 AllVid 80 80(train); 40(test) 40 156592 8400
UCID 80 UCID 80 80 1 131904 53480
CIFvid 80 CIFvid 80 48 30 79920 7920
AllVid 32 AllVid 32 80(train); 40(test) 40 191776 13872
AllIntra 32 AllVid 32 80(train); 40(test) 40 191776 13872
UCID 32 UCID 32 80 1 183320 26320
UCID 32 large UCID 32 32 1 974528 140512
CIFvid 32 CIFvid 32 32 60 118976 12672
CIFintra 32 CIFvid 32 32 60 118976 12672

of constant QP levels using variable bitrate mode. Constant quantisation pa-
rameters were selected with an even distribution: QP=[0, 7, 14, 21, 28, 35, 42,
49]. Constant bitrate rate control, psychovisual options and deblocking filter
were turned off. For datasets containing predicted frames, the key frame inter-
val was 250. Patches were then extracted from the decoded YUV4:2:0 sequences.
Patches were converted from YUV4:2:0 to YUV4:4:4, where the Y-channel repre-
sents intensity and U and V channels are colour. Table 2 summarises synthesised
datasets. A large temporal stride was used to limit correlation between patches.
Consecutive frames are similar to each other and training a neural network with
a correlated dataset will cause overfitting. Each patch was labelled with its quan-
tisation parameter. All datasets were prepared in advance of network training
and the original video sequences were split into train and test sets prior to com-
pression and patch sampling to prevent data leakage5.

Two different patch sizes were selected to investigate which aspects of com-
pression were important to CNNs. Block edge artifacts in intra frames will
present themselves at macroblock (and subblock) boundaries. Therefore, any
patch size larger than 16x16 will capture block edge artifacts. Following [14],
a small patch size of 32x32 was selected. A larger patch size of 80x80 pixels
was also used. When aligned with the macroblock grid, 80x80 pixels covers 5x5
complete macroblocks. A larger patch size allows for more context and image
features within the patch to contribute towards QP estimation. Spatial strides
were selected so that there was no patch overlap in the training set, although
patches taken from the same video sequence would exhibit some correlation.

3.2 Network architectures

For the purposes of this paper, three simple network architectures (NAs) were ex-
amined, summarised in Table 3. Image patches were format YUV 4:4:4, rescaled
to values between 0 and 1 and whitened. In order to preserve compression arti-
facts in situ, no further data augmentation was used. Batch size was 128 patches.
Unless otherwise noted in the results, NAs 1 and 2 were implemented with stride
= 2 for all convolutional and pooling layers.

Network architectures were designed with compression artifacts in mind.
H.264/AVC uses a minimum DCT block size of 4x4 pixels so a 4x4 kernel aligns

5 Training sequences: akiyo, bridge-close, bridge-far, carphone, claire, coastguard,
foreman, hall, highway, mobile, mother-daughter, paris, silent, stefan, water-
fall, old town cross, crowd run, ducks take off, in to tree, mobcal, old town cross,
parkrun, shields. Test sequences: bus, flower, news, tempete
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Table 3. A summary of network architectures
Name Layers

NA 1 conv4x4-64, pool3x3, norm, conv4x4-64, norm, pool3x3, fc-384, fc-192, softmax
NA 2 conv5x5-64, pool3x3, norm, conv5x5-64, norm, pool3x3, fc-384, fc-192, softmax
NA 3 [14] conv3x3-32, conv3x3-32, pool2x2, conv3x3-64, conv3x3-64, pool2x2, conv3x3-128,

conv3x3-128, pool2x2, conv3x3-256, conv3x3-256, pool2x2, conv3x3-512, conv3x3-
512, pool2x2, fc-512, softmax

to this. Using an even-sized kernel is unusual but not without precedent [21].
A stride of 2 allows sufficient overlap to encounter artifacts while reducing the
number of network parameters. Networks were trained and tested multiple times
and average accuracy and confusion matrix values taken for the results.

3.3 Estimating quantisation accuracy

The quantisation parameter (QP ) in H.264/AVC can be expressed as:

0 ≤ QP ≤ 52, QP ∈ R (2)

QP relates directly to Qs in Equation 1. Patches with similar QP labels
exhibit similar compression features, and confusion matrices produced by the
network reflected this. Two different QPs might have very similar effects on a
given patch, depending on the patch content. An example of this is a whole patch
of solid colour, which transforms to a single high amplitude, low frequency co-
efficient which is non-zero on quantisation. Such an extreme example is unlikely
in natural scenes but it demonstrates how applying close QPs might result in
identical patches with different labels. Therefore, QP has been sampled at [0, 7,
14, 21, 28, 35, 42, 49] in the synthesised datasets. Using all possible QP would
also generate an extremely large dataset and increase model training times. Us-
ing a range of sampled QP, the confusion matrices produced by the model can
be examined and super-classes composed to estimate accuracy.

Unlike the work presented in [13], where data was decomposed based on
discrete classes, in this paper, we combine each two adjacent classes into one,
assuming that the change in pixels is not significant within adjacent QP. Figure
1 gives a visual demonstration of how this can be applied to a confusion matrix.
In a confusion matrix, predicted labels from the network are tabulated against
ground truth class labels. The overall accuracy of the network is given as the sum
of the diagonal elements of the confusion matrix divided by the sum of all the
elements (Fig. 1a). That is, the correctly predicted elements divided by all the
elements. If some degree of error is permitted in the confusion matrix, adjacent
classes can be accepted as ”correct” and a new accuracy shown p̂ (Fig. 1b) can
be calculated by combining adjacent classes thus:

p̂ =
1

M
{

m∑
i=0

ai,i +

m∑
i=1

ai−1,i +

m∑
i=1

ai+1,i +

m∑
i=1

ai,i−1 +

m∑
i=1

ai,i+1} (3)

Although Equation 3 combines adjacent classes well in theory, testing how
well it represents a model where classes are combined before training would
involve assigning different labels to identical data. Instead, we compose super
classes according to Equation 4 and Figure 1c.
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(a) Standard
accuracy

(b) Combine
adjacent classes

(c) Removing label
ambiguity

Fig. 1. Different class compositions in a confusion matrix

p̂ =
1

M
{
m/2∑
i=0

a2i,2i +

m/2∑
i=0

a2i+1,2i +

m/2∑
i=0

a2i,2i+1 +

m/2∑
i=0

a2i+1,2i+1} (4)

Using Equation 4, labels can be unambiguously combined and a network
trained on these labels. Equation 4 can also be extended to create even larger
super-classes allowing for ever greater error.

4 Evaluation and discussion

The initial experiment using CIFVid 80 achieved only 36.25% accuracy. Fol-
lowing [14], patch size was reduced and UCID was introduced, creating two
new datasets: CIFVid 32 and UCID 32 large. The results in Table 4 show that
smaller patch size did not improve accuracy, but training on intra frames only
did. Halving the network stride parameter helped, but was still worse than us-
ing a larger patch size. Networks trained on UCID 32 large achieved accuracy
of over 58% when tested with UCID 32 large test data, but approximately half
that when tested with CIFVid 32.

CIFintra 32, comprising all key frames (Table 2) answered the question of
why learning from UCID 32 large did not translate well to CIFVid 32. Patches
in CIFVid 32 and CIFintra 32 come from exactly the same points in the video
sequences, so their content is strongly visually correlated. Only the underlying
compression modes differ. The best performing network architecture was re-
tested with CIFintra 32. The accuracy on CIFintra 32 using the network trained
on UCID 32 showed good improvement over testing on CIFVid 32 (54.14% vs
30.35%).

CIFVid 32, CIFintra 32 and UCID 32 large were mismatched in terms of
patch quantity within the training sets. To investigate whether this accounted
for some of the differences in accuracy, AllVid 32, AllIntra 32 and UCID 32
were created. Table 5 shows the accuracy achieved on each combination. The
larger training set UCID 32 large improved accuracy by an average 7.9% on
the UCID 32 test set but only average 2.34% on AllVid 32. The addition of
extra training video patches when increasing CIFVid 32 to AllVid 32 did not
increase accuracy. From these differences in performance, it can be concluded
that the UCID-based datasets were less correlated than those derived from video
sequences leading to more feature coverage and more generalisable networks.
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In Table 5 intra-only trained networks still out-performed those trained on Al-
lVid 32, except in the case of AllIntra 32 versus AllVid 32. Given that AllVid 32
and AllIntra 32 contain visually similar pixel patches, this implies that the net-
work trained on AllVid 32 has learned some features distinct to predicted frames
that do not translate to key frames. This pattern was repeated with patch size
80x80.

Larger patch size datasets AllVid 80, AllIntra 80 and UCID 80 were gener-
ated and used to train and test different network architectures. Table 5 shows the
results. Comparing results for AllVid 80 with CIFVid 80 and AllVid 32 (35.27%,
36.25%, 26.78%, respectively) show that increasing the number of patches did not
improve accuracy but increasing the patch size did. Although networks trained
and tested on UCID 80 achieved good accuracy (Table 5), the learning did not
transfer to AllVid 80. It did, however, translate to AllIntra 80. From this, it can
be deduced that QP can be successfully estimated directly from the pixels of
key frames but does not translate well to predicted frames. Networks trained
on predicted frame patches achieve lower accuracy than that those trained on
key frame patches. Moreover, the accuracy of networks trained on UCID 80 is
higher than those trained on AllIntra 80. This can be partly attributed to weaker
correlation in UCID 80 image patches.

Overall, NA 3, the deepest network, had the lowest accuracy. The limited
size of the datasets may have contributed to this, but it is more likely that
the depth of the network did not help with compression features. Compression
features in H.264/AVC are related to the size of the transforms used in the codec
and these vary from 4x4 to 16x16 pixels. It can be deduced that though deeper
networks go some way to accounting for differences in scale in traditional object
classification, this is largely unnecessary when examining compression.

Table 4. Initial results: Accuracy for patch size 32 (network 3 failed to train).
Network Tested on CIFVid 32

trained
UCID 32 large
trained

1 CIFVid 32 27.30 33.14
1 UCID 32 large 31.00 58.55
2 CIFVid 32 26.69 30.35
2 UCID 32 large 32.23 59.28
2 CIFintra 32 27.30 54.14
2 (stride=1) CIFVid 32 25.34 33.67
2 (stride=1) UCID 32 large 28.46 66.88

4.1 Relaxing the problem

Although the overall accuracy achieved on a network trained on predicted frame
patches from AllVid 80 was low, the confusion matrix implied a reasonable error
rate. Figure 2a shows the confusion matrix for NA 2 trained/tested on AllVid 80.
Average accuracy was 35.27%. With class labels combined as in equation 4, the
accuracy estimated from the confusion matrix is 54.65%. A network trained on
the reduced label dataset yields a comparable accuracy of 56.25%. Therefore,
the results obtained from calculations on the confusion matrix after training
are comparable to networks trained specifically on these super classes. Table
6 shows that this is true across all patch size 80 datasets. Composing super
classes from adjacent classes prior to training reduces the number of labels and
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Table 5. Cross evaluation on similar sized datasets. accuracy for patch size 32 (network
3 failed to train) and for patch size 80

Patch size 32 Patch size 80

Network Tested on AllVid 32
trained

AllIntra 32
trained

UCID 32
trained

Tested on AllVid 80
trained

AllIntra 80
trained

UCID 80
trained

1 AllVid 32 26.72 24.68 31.34 AllVid 80 34.93 26.02 36.72
1 AllIntra 32 27.75 33.75 44.14 AllIntra 80 34.11 37.94 63.40
1 UCID 32 33.74 41.56 50.96 UCID 80 41.28 47.46 72.75
2 AllVid 32 26.78 25.38 31.79 AllVid 80 35.27 29.39 37.28
2 AllIntra 32 27.07 33.16 45.05 AllIntra 80 34.93 46.54 62.50
2 UCID 32 33.83 41.25 51.07 UCID 80 42.04 56.66 71.65
3 - - - - AllVid 80 29.97 24.91 29.35
3 - - - - AllIntra 80 29.94 42.67 55.95
3 - - - - UCID 80 38.99 53.81 61.17

(a) Full (35.27%) (b) Reduced (54.65%) (c) Composed (56.25%)
Fig. 2. Confusion matrices for NA 2 trained/tested on AllVid 80 (overall accuracy for
a single network)

slightly enhances generalisation in the network, yielding slightly higher results
from video-based datasets with correlation between video patches. The same pat-
tern was repeated with other architectures, though results are omitted for space
considerations. QP in predicted frames can be estimated to within ±7 (one class)
with more than 54% accuracy. Higher quality frames are more challenging and
this may be attributed to the larger range of frequencies available in uncom-
pressed data. CNN models cannot distinguish between frequencies removed by
compression and those simply absent in the source data.

Table 6. Accuracy for patch size 80 (NA 2): composition after/before training
Tested on AllVid 80 trained AllIntra 80 trained UCID 80 trained

AllVid 80 54.65 / 56.25 52.99 / 54.08 60.70 / 59.55
AllIntra 80 55.24 / 56.51 66.62 / 67.55 78.81 / 78.47
UCID 80 66.81 / 67.94 78.58 / 79.57 88.43 / 88.41

The shape of the confusion matrices (Fig. 2) gives insight into the model’s
learning. Confusion matrices across all architectures and datasets demonstrated
similar shapes where the bottom left corner approached zero. Patches of high
QP were seldom misclassified as low QP. In contrast, the top right corner of the
confusion matrix, although it displays lower numbers than the diagonal portion,
does not always approach zero. This pattern suggests that the model has learned
something about the frequency domain. Natural images contain a large variety
of frequencies, however quantisation in the frequency domain selectively reduces
these (as in Equation 1). Weaker (low amplitude) frequency components are
quantised to zero and thus filtered out of an image, leaving behind only domi-
nant frequencies. For natural scenes, where lower frequencies tend to dominate,
quantisation applied in video compression is effectively a low pass filter. This
explains the ”blocky” appearance of compressed video. Low amplitude, high
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(a) First layer filters (b) 4x4 DCT
Fig. 3. Some of the first layer filters display visual similarity to a spatial representation
of the 4x4 DCT transform used in H.264/AVC

frequency components aid smooth colour or intensity transition and removing
these components leads to sharper colour transitions at macroblock edges. The
detection of high frequency components within macroblocks therefore indicates
lower QP. Unfortunately, the converse is not necessarily true. An absence of
high frequencies does not indicate high QP, since some images naturally lack
high frequency components.

4.2 First layer filters

A visual examination of the first layer filters confirms the presence of frequency
features. Figure 3b shows a spatial representation of the 4x4 Discrete Cosine
Transform used in H.264/AVC. These are pixels that result from an inverse
DCT on a 4x4 coefficient matrix where only one coefficient is non-zero. Figure
3a shows selected first layer filters from NA 2 trained on AllIntra 32. Visual
similarities are obvious. The CNN uses some first layer filters to infer frequency
information directly from the pixels. Statistical analysis of frequency was also
used in [19] to detect multiple compression.

4.3 Whole image heat map

Figure 4 shows classification results for 80x80 patches of a key frame from the
sequence ”flowers” at QP 0 and 35. A plain black border was added added af-
ter compression to allow classification of 80x80 patches centred on every 16x16
macroblock. The heatmaps all show misclassification along the top row due to
the black border. Comparing Figures 4a and 4d, it is difficult for human eyes to
differentiate between QP values, despite the large difference. The fine colour tran-
sition in the sky section is correctly classified by a network trained on UCID 80
as low QP. The network trained on AllVid 80 tends to overestimate sky QP
and perform better on the colourful flower section. At moderate QP, the model
trained on UCID 80 performs well. The AllVid 80 trained network achieves a
reasonable mean over the whole image but underestimates QP in busy areas
and overestimates in areas with fewer sharp edges. Mode 28 in Figure 4f shows
how the model confuses adjacent labels and validates the use of superclasses.

5 Conclusions and future work

We have shown that the level of compression of small image patches can be
estimated objectively by CNN. The accuracy of CNNs trained on intra frames is
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(a) flowers QP 0 (b) UCID (16.7/0) (c) AllVid (25.4/21)

(d) flowers QP 35 (e) UCID (35.6/35) (f) AllVid (33.0/28)
Fig. 4. The heat maps showing the predicted quant for a frame from the sequence
”flowers”, NA 2 used (mean/mode)

much higher than those trained on predicted frames. The experimental results
also strongly suggest that compression features learned from still images (intra
frames) alone do not transfer to predicted frames. Although a neural network
can be trained to estimate the QP in key frame patches, the results for predicted
frames were weaker. In predicted frames, quantisation is applied to the residual
difference between predicted and actual pixels. CNN compression estimation
may be improved by using residuals from the compressed bitstream rather than
reconstructed pixels. It may also be necessary to first identify intra macroblocks
within an image in order to gain an estimate of accuracy in QP estimation.

Larger patch sizes yield higher precision but further investigation will clar-
ify whether an optimum patch size exists. Smaller patch sizes are desirable if
the model is to serve as accurate tampering detection. The features learned in
the first layer of CNNs strongly resemble patterns of DCT coefficients, so QP
estimation may be improved by initialising some of the first layer weights with
DCT patterns.

Compression is no longer an irreversible ”black box”. Although recompression
destroys information about original compression mechanisms in the compressed
bitstream, tell-tale signs in the pixels can be used to estimate original levels
and this information could be used to detect video splicing as well as multiple
compressions.
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