12 research outputs found

    Ecological commonalities among pelagic fishes: comparison of freshwater ciscoes and marine herring and sprat

    Get PDF
    Systematic comparisons of the ecology between functionally similar fish species from freshwater and marine aquatic systems are surprisingly rare. Here, we discuss commonalities and differences in evolutionary history, population genetics, reproduction and life history, ecological interactions, behavioural ecology and physiological ecology of temperate and Arctic freshwater coregonids (vendace and ciscoes, Coregonus spp.) and marine clupeids (herring, Clupea harengus, and sprat, Sprattus sprattus). We further elucidate potential effects of climate warming on these groups of fish based on the ecological features of coregonids and clupeids documented in the previous parts of the review. These freshwater and marine fishes share a surprisingly high number of similarities. Both groups are relatively short-lived, pelagic planktivorous fishes. The genetic differentiation of local populations is weak and seems to be in part correlated to an astonishing variability of spawning times. The discrete thermal window of each species influences habitat use, diel vertical migrations and supposedly also life history variations. Complex life cycles and preference for cool or cold water make all species vulnerable to the effects of global warming. It is suggested that future research on the functional interdependence between spawning time, life history characteristics, thermal windows and genetic differentiation may profit from a systematic comparison of the patterns found in either coregonids or clupeids

    Linking growth to environmental histories in central Baltic young-of-the-year sprat, Sprattus sprattus: an approach based on otolith microstructure analysis and hydrodynamic modelling

    No full text
    Otolith microstructure analysis and hydrodynamic modelling were combined to study growth patterns in young-of-the-year (YoY) sprat, Sprattus sprattus, which were sampled in October 2002 in the central Baltic Sea. The observed ‘window of survival’, approximated by the distribution of back-calculated days of first feeding (DFF), was narrow compared to the extended spawning season of sprat in the Baltic Sea (mean± SD = 22 June ± 14.1 days) and indicated that only individuals born in summer survived until October 2002. Within the group of survivors, individuals born later in the season exhibited faster larval, but more rapidly decreasing juvenile growth rates than earlier born conspecifics. Back-calculated larval growth rates of survivors (0.48–0.69 mm day−1) were notably higher than those previously reported for average larval sprat populations, suggesting that the YoY population was predominantly comprised of individuals which grew faster during the larval stage. Daily mean temperatures, experienced across the entire YoY population, were derived from Lagrangian particle simulations and correlated with (1) detrended otolith growth and (2) back-calculated, daily somatic growth rates of survivors. The results showed that abrupt changes in ambient temperature can be detected in the seasonal pattern of otolith growth, and that higher temperatures led to significantly faster growth throughout the entire age range of YoY sprat
    corecore