30 research outputs found

    Lack of Effective Anti-Apoptotic Activities Restricts Growth of Parachlamydiaceae in Insect Cells

    Get PDF
    The fundamental role of programmed cell death in host defense is highlighted by the multitude of anti-apoptotic strategies evolved by various microbes, including the well-known obligate intracellular bacterial pathogens Chlamydia trachomatis and Chlamydia (Chlamydophila) pneumoniae. As inhibition of apoptosis is assumed to be essential for a successful infection of humans by these chlamydiae, we analyzed the anti-apoptotic capacity of close relatives that occur as symbionts of amoebae and might represent emerging pathogens. While Simkania negevensis was able to efficiently replicate within insect cells, which served as model for metazoan-derived host cells, the Parachlamydiaceae (Parachlamydia acanthamoebae and Protochlamydia amoebophila) displayed limited intracellular growth, yet these bacteria induced typical features of apoptotic cell death, including formation of apoptotic bodies, nuclear condensation, internucleosomal DNA fragmentation, and effector caspase activity. Induction of apoptosis was dependent on bacterial activity, but not bacterial de novo protein synthesis, and was detectable already at very early stages of infection. Experimental inhibition of host cell death greatly enhanced parachlamydial replication, suggesting that lack of potent anti-apoptotic activities in Parachlamydiaceae may represent an important factor compromising their ability to successfully infect non-protozoan hosts. These findings highlight the importance of the evolution of anti-apoptotic traits for the success of chlamydiae as pathogens of humans and animals

    The Drosophila melanogaster host model

    Get PDF
    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed

    Characterization of the extended-spectrum β-lactamases and determination of the virulence factors of uropathogenic Escherichia coli strains isolated from children

    Get PDF
    BACKGROUND AND AIM: The aim of the study was to characterize ESBL-producing uropathogenic Escherichia coli (UPEC) strains isolated in children. That included the investigation of virulence factors and the analysis of the types of β-lactamases at the molecular genetic level. ----- MATERIAL AND METHODS: During the 2-year study period, 77 ESBL-producing E. coli strains were recovered from urine samples of febrile children with significant bacteriuria hospitalized at one Croatian hospital. Susceptibility of isolates to bactericidal serum activity was tested by Shiller and Hatch method, while adhesin expression was determined by agglutination methods. Characterization of ESBLs was performed by PCR with specific primers for ESBLs and by sequencing of bla (ESBL) genes. Genotyping of the E. coli isolates was performed by pulsed-field gel electrophoresis (PFGE). ----- RESULTS: Twenty-seven (35.1 %) and 50 (64.9 %) ESBL-producing UPEC strains were isolated in neonates and infants, respectively. Of 70 strains investigated for the presence of virulence factors, adhesins were detected in 48.6 % strains (8.6 % in the neonate and 40 % in the infants group) giving a statistically significant difference in adhesin expression between the two groups (p < 0.01). Hemolysin was produced by 84.3 %, whereas 70 % of strains were serum-resistant. The bla (TEM) gene was detected in 22 (28 %) and bla (SHV) gene in 57 strains (74 %), whereas bla (CTX-M) gene was detected in only two isolates (2.5%). In ten isolates, bla (TEM) and bla (SHV) were simultaneously detected. Sequencing of bla (SHV) genes revealed that SHV-5 β-lactamase was by far the most prevalent and was found in 51 strains (66 %). The strains were clonally related as demonstrated by PFGE and assigned into ten clusters. ----- CONCLUSIONS: Infection control measures should be employed and the consumption of expanded-spectrum cephalosporins in the hospital should be restricted
    corecore