5 research outputs found

    20 ps Time Resolution with a Fully-Efficient Monolithic Silicon Pixel Detector without Internal Gain Layer

    Full text link
    A second monolithic silicon pixel prototype was produced for the MONOLITH project. The ASIC contains a matrix of hexagonal pixels with 100 {\mu}m pitch, readout by a low-noise and very fast SiGe HBT frontend electronics. Wafers with 50 {\mu}m thick epilayer of 350 {\Omega}cm resistivity were used to produce a fully depleted sensor. Laboratory and testbeam measurements of the analog channels present in the pixel matrix show that the sensor has a 130 V wide bias-voltage operation plateau at which the efficiency is 99.8%. Although this prototype does not include an internal gain layer, the design optimised for timing of the sensor and the front-end electronics provides a time resolutions of 20 ps.Comment: 11 pages, 11 figure

    Radiation Tolerance of SiGe BiCMOS Monolithic Silicon Pixel Detectors without Internal Gain Layer

    Full text link
    A monolithic silicon pixel prototype produced for the MONOLITH ERC Advanced project was irradiated with 70 MeV protons up to a fluence of 1 x 10^16 1 MeV n_eq/cm^2. The ASIC contains a matrix of hexagonal pixels with 100 {\mu}m pitch, readout by low-noise and very fast SiGe HBT frontend electronics. Wafers with 50 {\mu}m thick epilayer with a resistivity of 350 {\Omega}cm were used to produce a fully depleted sensor. Laboratory tests conducted with a 90Sr source show that the detector works satisfactorily after irradiation. The signal-to-noise ratio is not seen to change up to fluence of 6 x 10^14 n_eq /cm^2 . The signal time jitter was estimated as the ratio between the voltage noise and the signal slope at threshold. At -35 {^\circ}C, sensor bias voltage of 200 V and frontend power consumption of 0.9 W/cm^2, the time jitter of the most-probable signal amplitude was estimated to be 21 ps for proton fluence up to 6 x 10 n_eq/cm^2 and 57 ps at 1 x 10^16 n_eq/cm^2 . Increasing the sensor bias to 250 V and the analog voltage of the preamplifier from 1.8 to 2.0 V provides a time jitter of 40 ps at 1 x 10^16 n_eq/cm^2.Comment: Submitted to JINS

    Reliable metal-graphene contact formation process flows in a CMOS-compatible environment

    No full text
    The possibility of exploiting the enormous potential of graphene for microelectronics and photonics must go through the optimization of the graphene-metal contact. Achieving low contact resistance is essential for the consideration of graphene as a candidate material for electronic and photonic devices. This work has been carried out in an 8′′ wafer pilot-line for the integration of graphene into a CMOS environment. The main focus is to study the impact of the patterning of graphene and passivation on metal-graphene contact resistance. The latter is measured by means of transmission line measurement (TLM) with several contact designs. The presented approaches enable reproducible formation of contact resistivity as low as 660 Ω μm with a sheet resistance of 1.8 kΩ/□ by proper graphene patterning, passivation of the channel and a post-processing treatment such as annealing

    Radiation tolerance of SiGe BiCMOS monolithic silicon pixel detectors without internal gain layer

    No full text
    A monolithic silicon pixel prototype produced for theMONOLITH ERC Advanced project was irradiated with 70 MeV protons upto a fluence of 1 × 1016^{16}1 MeV neq_{eq}/cm2^{2}. The ASIC contains a matrix ofhexagonal pixels with 100 μm pitch, readout by low-noise andvery fast SiGe HBT frontend electronics. Wafers with 50 μmthick epilayer with a resistivity of 350 Ωcm were used toproduce a fully depleted sensor. Laboratory tests conducted with a90^{90}Sr source show that the detector works satisfactorily afterirradiation. The signal-to-noise ratio is not seen to change up tofluence of 6 × 1014^{14}neq_{eq}/cm2^{2}. The signaltime jitter was estimated as the ratio between the voltage noise andthe signal slope at threshold. At -35°C, sensor bias voltageof 200 V and frontend power consumption of 0.9 W/cm2^{2}, the timejitter of the most-probable signal amplitude was estimated to be σt_{t}90^{90}Sr = 21 ps for proton fluence up to6 × 1014^{14}neq_{eq}/cm2^{2} and 57 ps at1 × 1016^{16}neq_{eq}/cm2^{2}. Increasing the sensorbias to 250 V and the analog voltage of the preamplifier from 1.8to 2.0 V provides a time jitter of 40 ps at1 × 1016^{16}neq_{eq}/cm2^{2}.A monolithic silicon pixel prototype produced for the MONOLITH ERC Advanced project was irradiated with 70 MeV protons up to a fluence of 1 x 10^16 1 MeV n_eq/cm^2. The ASIC contains a matrix of hexagonal pixels with 100 μm pitch, readout by low-noise and very fast SiGe HBT frontend electronics. Wafers with 50 μm thick epilayer with a resistivity of 350 Ωcm were used to produce a fully depleted sensor. Laboratory tests conducted with a 90Sr source show that the detector works satisfactorily after irradiation. The signal-to-noise ratio is not seen to change up to fluence of 6 x 10^14 n_eq /cm^2 . The signal time jitter was estimated as the ratio between the voltage noise and the signal slope at threshold. At -35 {^∘}C, sensor bias voltage of 200 V and frontend power consumption of 0.9 W/cm^2, the time jitter of the most-probable signal amplitude was estimated to be 21 ps for proton fluence up to 6 x 10 n_eq/cm^2 and 57 ps at 1 x 10^16 n_eq/cm^2 . Increasing the sensor bias to 250 V and the analog voltage of the preamplifier from 1.8 to 2.0 V provides a time jitter of 40 ps at 1 x 10^16 n_eq/cm^2

    Time resolution of a SiGe BiCMOS monolithic silicon pixel detector without internal gain layer with a femtosecond laser

    No full text
    Abstract The time resolution of the second monolithic silicon pixel prototype produced for the MONOLITH H2020 ERC Advanced project was studied using a femtosecond laser. The ASIC contains a matrix of hexagonal pixels with 100 μm pitch, readout by low-noise and very fast SiGe HBT frontend electronics. Silicon wafers with 50 μm thick epilayer with a resistivity of 350 Ωcm were used to produce a fully depleted sensor. At the highest frontend power density tested of 2.7 W/cm 2 , the time resolution with the femtosecond laser pulses was found to be 45 ps for signals generated by 1200 electrons, and 3 ps in the case of 11k electrons, which corresponds approximately to 0.4 and 3.5 times the most probable value of the charge generated by a minimum-ionizing particle. The results were compared with testbeam data taken with the same prototype to evaluate the time jitter produced by the fluctuations of the charge collection. </p
    corecore