26 research outputs found
Electrical and Thermal Characterization of Electrospun PVP Nanocomposite Fibers
Polyvinylpyrrolidone (PVP) solutions incorporated with multiwall carbon nanotubes (MWCNTs) were electrospun at various weight percentages, and then the electrical resistance and some thermal properties of these nanocomposite fibers were determined using a high-accuracy electrical resistance measurement device. During the electrospinning process, system and process parameters, such as concentrations, applied voltage, tip-to-collector distance, and pump speeds, were optimized to receive the consistent nanocomposite fibers. When polymers are used in many industrial applications, they require high electrical and thermal conductivities. Most polymers exhibit low electrical conductivity values; however, in the presence of conductive inclusions, the electrical resistance of the MWCNT fibers was reduced from 50 MΩ to below 5 MΩ, which may be attributed to the higher electrical conductivities of these nanoscale inclusions and fewer voids under the applied loads. This study may open up new possibilities in the field for developing electrically conductive novel nanomaterials and devices for various scientific and technological applications
Drug-Carrying Magnetic Nanocomposite Particles for Potential Drug Delivery Systems
Drug-carrying magnetic nanocomposite spheres were synthesized using magnetite
nanoparticles and poly (D,L-lactide-co-glycolide) (PLGA) for the purpose of magnetic targeted drug delivery. Magnetic nanoparticles (∼13 nm on average) of magnetite were prepared by a chemical coprecipitation of ferric and ferrous chloride salts in the presence of a strong basic solution (ammonium hydroxide). An oil-in-oil emulsion/solvent evaporation technique was conducted at 7000 rpm and 1.5–2 hours agitation for the synthesis of nanocomposite spheres. Specifically, PLGA and drug were first dissolved in acetonitrile (oily phase I) and combined with magnetic nanoparticles, then added dropwise into viscous paraffin oil combined with Span 80 (oily phase II). With different contents (0%, 10%, 20%, and 25%) of magnetite, the nanocomposite spheres were evaluated in terms of particle size, morphology, and magnetic properties by using dynamic laser light scattering (DLLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and a superconducting quantum interference device (SQUID). The results indicate that nanocomposite spheres (200 nm to 1.1 μm in diameter) are superparamagnetic above the blocking temperature near 40 K and their magnetization saturates above 5 000 Oe at room temperature
Microstructure and Superparamagnetic Properties of Mg-Ni-Cd Ferrites Nanoparticles
Magnesium substituted nickel cadmium ferrite nanoparticles MgxNi0.6−xCd0.4Fe2O4 (from x = 0 to 0.6 with step 0.1) have been synthesized by the chemical coprecipitation route. X-ray diffraction (XRD) and infrared spectroscopy (FTIR) revealed that the obtained powders have a single phase of cubic spinel structure. The crystallite sizes calculated from XRD data have been confirmed using transmission electron microscopy (TEM) showing that the powders are consisting of nanosized grains with an average size range 5–1.5 nm. Magnetic hysteresis loops were traced at 6.5 K as well as at room temperature using VSM. It was found that, due to the Mg2+-ions substitution, the values of saturation magnetization Ms for the investigated samples were decreased, whereas the coercive field Hc increased. Both zero field cooling (ZFC) and field cooling (FC) curves are measured in the temperature range (6.5–350 K) and the values of blocking temperature TB were determined. No considerable variation in the values of TB was observed with increasing Mg-content, whereas the values of the effective anisotropy constant Keff were increased
Electrical and thermal characterization of electrospun PVP nanocomposite fibers
Polyvinylpyrrolidone (PVP) solutions incorporated with multiwall carbon nanotubes (MWCNTs) were electrospun at various weight percentages, and then the electrical resistance and some thermal properties of these nanocomposite fibers were determined using a high-accuracy electrical resistance measurement device. During the electrospinning process, system and process parameters, such as concentrations, applied voltage, tip-to-collector distance, and pump speeds, were optimized to receive the consistent nanocomposite fibers. When polymers are used in many industrial applications, they require high electrical and thermal conductivities. Most polymers exhibit low electrical conductivity values; however, in the presence of conductive inclusions, the electrical resistance of the MWCNT fibers was reduced from 50 MΩ to below 5 MΩ, which may be attributed to the higher electrical conductivities of these nanoscale inclusions and fewer voids under the applied loads. This study may open up new possibilities in the field for developing electrically conductive novel nanomaterials and devices for various scientific and technological applications
The Autonomy Evolution in Unmanned Aerial Vehicle: Theory, Challenges and Techniques
The research areas in the field of UAVs have increased considerably during the last years, the research in this field is driven by the specific needs of each organization that conduct the research, There are two main research areas, the first is the operational and it is conducted by the governmental institutions and the universities, and the second is the technological and it is conducted mainly by the companies, This paper discusses the current technological research topics in the field of UAVs, focusing on the fuzzy-logic based methods which are employed in many control problems to increase the level of autonomy, the fuzzy-logic is considered as a promising hot subject which contains many active research topics and multiple potential tools for solving complex control problems to extend the UAV capabilities to perform different functions like Optimal path planning, Collision avoidance, Trajectory motion and path following autonomously without the need of the human pilot with the minimum human supervision, the paper illustrates the different levels, functions and challenges of autonomy and a comparative analysis is conducted to analyze four potential directions which are considered to be promising areas for fuzzy-logic based approaches. It also highlights the two main areas of AI research in the field of UAV autonomous flight, 1) the imitation of the human pilot and 2) the high-level applications like image evaluation, and how to tackle some of the problems in these areas with aid of fuzzy-logic based machine learning algorithms.
</p
The Promising Effect of Ascorbic Acid and Paracetamol as Anti-Biofilm and Anti-Virulence Agents against Resistant <i>Escherichia coli</i>
Escherichia coli is a major cause of serious infections, with antibiotic resistance rendering many treatments ineffective. Hence, novel strategies to combat this pathogen are needed. Anti-virulence therapy is a promising new approach for the subsequent era. Recent research has examined the impact of sub-inhibitory doses of ascorbic acid and paracetamol on Escherichia coli virulence factors. This study evaluated biofilm formation, protease production, motility behavior, serum resistance, expression of virulence-regulating genes (using RT-PCR), and survival rates in a mouse model. Ascorbic acid significantly reduced biofilm formation, protease production, motility, and serum resistance from 100% in untreated isolates to 22–89%, 10–89%, 2–57%, and 31–35% in treated isolates, respectively. Paracetamol also reduced these factors from 100% in untreated isolates to 16–76%, 1–43%, 16–38%, and 31–35%, respectively. Both drugs significantly down-regulated virulence-regulating genes papC, fimH, ompT_m, stcE, fliC, and kpsMTII. Mice treated with these drugs had a 100% survival rate compared with 60% in the positive control group control inoculated with untreated bacteria. This study highlights the potential of ascorbic acid and paracetamol as anti-virulence agents, suggesting their use as adjunct therapies alongside conventional antimicrobials or as alternative treatments for resistant Escherichia coli infections