905 research outputs found
Break-down of the density-of-states description of scanning tunneling spectroscopy in supported metal clusters
Low-temperature scanning tunneling spectroscopy allows to probe the
electronic properties of clusters at surfaces with unprecedented accuracy. By
means of quantum transport theory, using realistic tunneling tips, we obtain
conductance curves which considerably deviate from the cluster's density of
states. Our study explains the remarkably small number of peaks in the
conductance spectra observed in recent experiments. We demonstrate that the
unambiguous characterization of the states on the supported clusters can be
achieved with energy-resolved images, obtained from a theoretical analysis
which mimics the experimental imaging procedure.Comment: 5 pages, 3 figure
Magnetization Process of the S=1 and 1/2 Uniform and Distorted Kagome Heisenberg Antiferromagnets
The magnetization process of the S=1 and 1/2 kagome Heisenberg
antiferromagnet is studied by means of the numerical exact diagonalization
method. It is found that the magnetization curve at zero temperature has a
plateau at 1/3 of the full magnetization. In the presence of lattice distortion, this plateau is enhanced and eventually the
ferrimagnetic state is realized. There also appear the minor plateaux above the
main plateau. The physical origin of these phenomena is discussed.Comment: 5 pages, 10 figures included, to be published in J. Phys. Soc. Jp
Isotropic Spin Wave Theory of Short-Range Magnetic Order
We present an isotropic spin wave (ISW) theory of short-range order in
Heisenberg magnets, and apply it to square lattice S=1/2 and S=1
antiferromagnets. Our theory has three identical (isotropic) spin wave modes,
whereas the conventional spin wave theory has two transverse and one
longitudinal mode. We calculate temperature dependences of various
thermodynamic observables analytically and find good (several per cent)
agreement with independently obtained numerical results in a broad temperature
range.Comment: 4 pages, REVTeX v3 with 3 embedded PostScript figure
Response of C(60) and C(n) to ultrashort laser pulses
Journals published by the American Physical Society can be found at http://journals.aps.org/In this paper we introduce a method for realistic simulations of nonadiabatic processes, including the interaction of light with matter. Calculations of the response Of C(60) and carbon chains to laser pulses demonstrate that even rather subtle features are correctly described. For example, in C(60) the pentagonal-pinch models dominant at low fluence, the breathing mode is dominant at high fluence, and dimers are preferentially emitted during photofragmentation. In carbon chains, on the other hand, trimers tend to be broken off. After collisional fragmentation, the remnants of a C(60) molecule tend to reform their bonds, yielding new 5, 6, or 7 membered rings
Field dependent thermodynamics and Quantum Critical Phenomena in the dimerized spin system Cu2(C5H12N2)2Cl4
Experimental data for the uniform susceptibility, magnetization and specific
heat for the material Cu2(C5H12N2)2Cl4 (abbreviated CuHpCl) as a function of
temperature and external field are compared with those of three different
dimerized spin models: alternating spin-chains, spin-ladders and the bilayer
Heisenberg model. It is shown that because this material consists of weakly
coupled spin-dimers, much of the data is insensitive to how the dimers are
coupled together and what the effective dimensionality of the system is. When
such a system is tuned to the quantum critical point by application of a field,
the dimensionality shows up in the power-law dependences of thermodynamic
quantities on temperature. We discuss the temperature window for such a quantum
critical behavior in CuHpCl.Comment: Revtex, 5 pages, 4 figures (postscript
Spin-1/2 Heisenberg-Antiferromagnet on the Kagome Lattice: High Temperature Expansion and Exact Diagonalisation Studies
For the spin- Heisenberg antiferromagnet on the Kagom\'e lattice
we calculate the high temperature series for the specific heat and the
structure factor. A comparison of the series with exact diagonalisation studies
shows that the specific heat has further structure at lower temperature in
addition to a high temperature peak at . At the
structure factor agrees quite well with results for the ground state of a
finite cluster with 36 sites. At this temperature the structure factor is less
than two times its value and depends only weakly on the wavevector
, indicating the absence of magnetic order and a correlation length of
less than one lattice spacing. The uniform susceptibility has a maximum at
and vanishes exponentially for lower temperatures.Comment: 15 pages + 5 figures, revtex, 26.04.9
Quantum phase transitions in the Triangular-lattice Bilayer Heisenberg Model
We study the triangular lattice bilayer Heisenberg model with
antiferromagnetic interplane coupling and nearest neighbour
intraplane coupling , which can be ferro- or
antiferromagnetic, by expansions in . For negative a phase
transition is found to an ordered phase at a critical which is in the 3D classical Heisenberg universality class. For
, we find a transition at a rather large . The
universality class of the transition is consistent with that of Kawamura's 3D
antiferromagnetic stacked triangular lattice. The spectral weight for the
triplet excitations, at the ordering wavevector, remains finite at the
transition, suggesting that a phase with free spinons does not exist in this
model.Comment: revtex, 4 pages, 3 figure
The two-dimensional quantum Heisenberg antiferromagnet: effective Hamiltonian approach to the thermodynamics
In this paper we present an extensive study of the thermodynamic properties
of the two-dimensional quantum Heisenberg antiferromagnet on the square
lattice; the problem is tackled by the pure-quantum self-consistent harmonic
approximation, previously applied to quantum spin systems with easy-plane
anisotropies, modeled to fit the peculiar features of an isotropic system.
Internal energy, specific heat, correlation functions, staggered
susceptibility, and correlation length are shown for different values of the
spin, and compared with the available high-temperature expansion and quantum
Monte Carlo results, as well as with the available experimental data.Comment: 14 pages, 13 Postscript figures embedded by psfig.sty; revisions:
paper shortened, some parts moved in the appendices, 4 figures replaced by 2
only, minor errors correcte
Rotational invariance and order-parameter stiffness in frustrated quantum spin systems
We compute, within the Schwinger-boson scheme, the Gaussian-fluctuation
corrections to the order-parameter stiffness of two frustrated quantum spin
systems: the triangular-lattice Heisenberg antiferromagnet and the J1-J2 model
on the square lattice. For the triangular-lattice Heisenberg antiferromagnet we
found that the corrections weaken the stiffness, but the ground state of the
system remains ordered in the classical 120 spiral pattern. In the case of the
J1-J2 model, with increasing frustration the stiffness is reduced until it
vanishes, leaving a small window 0.53 < J2/J1 < 0.64 where the system has no
long-range magnetic order. In addition, we discuss several methodological
questions related to the Schwinger-boson approach. In particular, we show that
the consideration of finite clusters which require twisted boundary conditions
to fit the infinite-lattice magnetic order avoids the use of ad hoc factors to
correct the Schwinger-boson predictions.Comment: 9 pages, Latex, 6 figures as ps files, fig.1 changed and minor text
corrections, to appear in Phys.Rev.
Realization of a large J_2 quasi-2D spin-half Heisenberg system: Li2VOSiO4
Exchange couplings are calculated for Li2VOSiO4 using LDA. While the sum of
in-plane couplings J_1 + J_2 = 9.5 \pm 1.5 K and the inter-plane coupling
J_{perp} \sim 0.2 - 0.3 K agree with recent experimental data, the ratio
J_2/J_1 \sim 12 exceeds the reported value by an order of magnitude. Using
geometrical considerations, high temperature expansions and perturbative mean
field theory, we show that the LDA derived exchange constants lead to a
remarkably accurate description of the properties of these materials including
specific heat, susceptibility, Neel temperature and NMR spectra.Comment: 4 two-column pages, 4 embedded postscript figure
- ā¦