837 research outputs found

    GC-MS Determination of Flunitrazepam and its Major Metabolite in Whole Blood and Plasma

    Get PDF
    A gas chromatography-mass spectrometry method was developed for the analysis of flunitrazepam (FN) and its major metabolite, 7-amino-flunitrazepam (7-amino-FN), in both plasma and whole blood. The method was based on acid hydrolysis of the samples after dilution with HPLC water followed by extraction and derivatization (heptafluorobutyrate) of the resulting benzophenones. Analysis of plasma and whole blood samples from subjects administered 2-mg doses of FN showed that FN was only detected in whole blood (LOD 5 ng/mL) and not in plasma. However, 7-Amino-FN was detected in both plasma and whole blood, although the levels were much higher in plasma. 7-Amino-FN was detected for the entire period of specimen collection (12 h), but FN was only detected in whole blood for 4 h after ingestion with peak levels after 1

    (6aR,10aR)-6,6,9-Trimethyl-3-pentyl-6a,7,8,10a-tetra­hydro-6H-benzo[c]­chromen-1-yl 4-methyl­benzene­sulfonate

    Get PDF
    In the crystal structure of the title compound, C28H36O4S, the p-tolyl ring is inclined at 35.8° to the aromatic ring. The cyclohexene ring adopts a boat conformation and the heterocyclic ring is in a slightly distorted screw boat conformation

    Comprehensive chromatographic profiling of cannabis from 23 USA States marketed for medical purposes

    Get PDF
    In this research, cannabis varieties represent 23 USA States were assayed by GC-FID to generate their complex chemical profiles informative for plants clustering. Results showed that 45 cannabinoids and terpenoids were quantified in all plant samples, where 8 cannabinoids and 18 terpenoids were identified. Among organics, Δ9-THC, CBN (cannabinoids) and Fenchol (terpenoid) not only showed the highest levels overall contents, but also were the most important compounds for cannabis clustering. Among States, Washington, Oregon, California and Hawaii have the highest cannabis content. GC-FID data were subjected to PCA and HCA to find (1) the variations among cannabis chemical profiles as a result of growing environment, (2) to reveal the compounds that were responsible for grouping cultivars between clusters and (3) finally, to facilitate the future profile prediction and States clustering of unknown cannabis based on the chemical profile. The 23 cannabis USA States were grouped into three clusters based on only Δ9-THC, CBN, C1 and Fenchol content. Cannabis classification based on GC-profile will meet the practical needs of cannabis applications in clinical research, industrial production, patients’ self-production, and contribute to the standardization of commercially-available cannabis cultivars in USA

    Linear discriminant analysis based on gas chromatographic measurements for geographical prediction of USA medical domestic cannabis

    Get PDF
    Fifty four domestically produced cannabis samples obtained from different USA states were quantitatively assayed by GC-FID to detect 22 active components: 15 terpenoids and 7 cannabinoids. The profiles of the selected compounds were used as inputs for samples grouping to their geographical origins and for building a geographical prediction model using Linear Discriminant Analysis. The proposed sample extraction and chromatographic separation was satisfactory to select 22 active ingredients with a wide analytical range between 5.0 and 1,000 ÎŒg/mL. Analysis of GC-profiles by Principle Component Analysis retained three significant variables for grouping job (Δ9-THC, CBN, and CBC) and the modest discrimination of samples based on their geographical origin was reported. PCA was able to separate many samples of Oregon and Vermont while a mixed classification was observed for the rest of samples. By using LDA as a supervised classification method, excellent separation of cannabis samples was attained leading to a classification of new samples not being included in the model. Using two principal components and LDA with GC-FID profiles correctly predict the geographical of 100% Washington cannabis, 86% of both Oregon and Vermont samples, and finally, 71% of Ohio samples

    D02. NCNPR Activities at Coy Waller Complex

    Get PDF
    Corresponding author (NCNPR, School of Pharmacy): Mohamed M. Radwan, [email protected]://egrove.olemiss.edu/pharm_annual_posters/1024/thumbnail.jp

    Profiles of Urine Samples Taken from Ecstasy Users at Rave Parties: Analysis by Immunoassays, HPLC, and GC-MS

    Get PDF
    The abuse of the designer amphetamines such as 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) is increasing throughout the world. They have become popular drugs, especially at all-night techno dance parties (Raves), and their detection is becoming an important issue. Presently, there are no MDMA- or MDA-specific immunoassays on the market, and detection of the designer amphetamines is dependent upon the use of commercially available amphetamine assays. The success of this approach has been difficult to assess because of the general unavailability of significant numbers of samples from known drug users. The objectives of the present study are to characterize the drug content of urine samples from admitted Ecstasy users by chromatographic methods and to assess the ability of the available amphetamine/methamphetamine immunoassays to detect methylenedioxyamphetamines. We found that, when analyzed by high-performance liquid chromatography with diode-array detection (HPLC-DAD), 64% of 70 urine samples (by gas chromatography-mass spectrometry [GC-MS]: 88% of 64 urine samples) obtained from Rave attendees contained MDMA and/or 3,4-methylenedioxyamphetamine (MDA) alone or in combination with amphetamine, methamphetamine, or other designer amphetamines such as 3,4-methylenedioxyethylamphetamine (MDEA). This suggests that the majority of the Ravers are multi-drug users. At the manufacturer's suggested cutoffs, the Abbott TDx Amphetamine/Methamphetamine II and the new Roche HS Amphetamine/MDMA assays demonstrated greater detection sensitivity for MDMA than the other amphetamine immunoassays tested (Abuscreen OnLine Hitachi AMPS, Abuscreen OnLine Integra AMPS, Abuscreen OnLine Integra AMPSX, CEDIA AMPS, and EMIT II AMPS). There is 100% agreement between each of the two immunoassays with the reference chromatographic methods, HPLC-DAD and GC-MS, for the detection of methylenedioxyamphetamine

    Employing Hot-Melt Extrusion Technology to Enhance the Solubility of Cannabidiol (CBD)

    Get PDF
    Corresponding author (Pharmaceutics and Drug Delivery): Iman Taha, [email protected]://egrove.olemiss.edu/pharm_annual_posters_2022/1020/thumbnail.jp

    Electrochemical behaviour of gamma hydroxybutyric acid at a platinum electrode in acidic medium

    Get PDF
    The electrooxidation of Gamma Hydroxybutyric Acid (GHB) on a polycrystalline platinum electrode is studied by cyclic voltammetry in acidic medium. Two oxidation peaks, A and B, are obtained in the positive scan within the potential range of the double layer region and of the platinum oxide region, respectively. In the negative going potential sweep an inverted oxidation peak with an onset partially overlapping with the tail of the cathodic peak for the reduction of the platinum oxide formed during the anodic scan is obtained (peak C). This inverted peak can be observed at a potential close to +0.2 V (vs Ag/AgCl at pH 2) and separated 0.4 and 0.8 V from the two other oxidation peaks obtained during the anodic scan and in such conditions that the surface is particularly activated to favour this electrochemical process. The response obtained in the electronic current for the different peaks when GHB concentration and scan rate were changed to allows inferring that these are the result of a potential dependent mechanism. The behaviour observed is according with the oxidation of the alcohol group to the corresponding aldehyde and carboxylic acid (succinic acid) as main products
    • 

    corecore