21 research outputs found
Can angiotropism and lymphovascular invasion refine the current cutaneous melanoma staging system?
Background: Several prognostic factors for primary cutaneous melanoma (PCM) have been identified, and these predict metastasis and survival, to a certain extent. We sought to determine the frequency of angiotropism (AT) and lymphovascular invasion (LVI) in PCM and the relationship between AT, LVI, and other clinicopathological parameters and patient's prognosis. Methods: This study included 538 cases of PCM diagnosed between 2003 and 2016. It comprised 246 females and 292 males whose clinicopathological variables were evaluated with respect to LVI and AT using univariate and multivariate analyses. Overall survival (OS) was assessed by KaplanāMeier (KM) analysis and Cox regression multivariate analysis. Results: AT occurred more frequently than LVI. Ulceration, mitotic rate, and Breslow thickness were found to be highly associated with both LVI and AT (p < 0.01). All LVI+ cases had AT, with a significant positive correlation (p < 0.01). Both AT and LVI predicted lymph node (LN) metastasis (odds ratio [OR] = 1.47, 1.12, respectively). Multivariate analysis showed LN metastasis, Breslow thickness, LVI, and AT as predictors of OS. LVI and AT independently predicted adverse OS by Cox regression analysis (hazard ratio [HR] = 1.66, 1.49, respectively) and with KM survival analysis. Conclusion: AT is a marker for angiotropic extravascular migratory tumor spread (angiotropic EVMM), and LVI is a marker for intraālymphovascular tumor spread. Both predict poor prognosis. Given its ease of detection, AT could be adopted as a histologpathological feature in the routine assessment of primary cutaneous malignant melanoma cases
Diagnostic accuracy of autofluorescence-Raman spectroscopy for surgical margin assessment during Mohs micrographic surgery of basal cell carcinoma
Autofluorescence (AF)-Raman spectroscopy has been shown to identify residual basal cell carcinoma (BCC) on frozen skin specimens and fresh skin specimens immediately after excision by Mohs surgery. This first diagnostic test of accuracy of AF-Raman on 130 full-face Mohs tissue layers (130 patients) shows that with improvement in tissue processing, the AF-Raman instrument is viable technique for intra-operative assessment of surgical margins
Ex vivo assessment of basal cell carcinoma surgical margins in Mohs surgery by autofluorescenceāRaman spectroscopy: A pilot study
Background: Autofluorescence (AF)āRaman spectroscopy is a technology that can detect tumour tissue in surgically excised skin specimens. The technique does not require tissue fixation, staining, labelling or sectioning, and provides quantitative diagnosis maps within 30 min. Objectives: To explore the clinical application of AFāRaman microscopy to detect residual basal cell carcinoma (BCC) positive margins in ex vivo skin specimens excised during realātime Mohs surgery. To investigate the ability to analyse skin specimens from different parts of the headāandāneck areas and detect nodular, infiltrative and superficial BCC. Methods: Fifty Mohs tissue layers (50 patients) were investigated: 27 split samples (two halves) and 23 fullāface samples. The AFāRaman results were compared to frozen section histology, carried out intraoperatively by the Mohs surgeon and postoperatively by dermatopathologists. The latter was used as the standard of reference. Results: The AFāRaman analysis was completed within the target time of 30 min and was able to detect all subtypes of BCC. For the split specimens, the AFāRaman analysis covered 97% of the specimen surface area and detected eight out of nine BCC positive layers (similar to Mohs surgeons). For the fullāface specimens, poorer contact between tissue and cassette coverslip led to lower coverage of the specimen surface area (92%), decreasing the detection rate (four out of six positives for BCC). Conclusions: These preliminary results, in particular for the split specimens, demonstrate the feasibility of AFāRaman microscopy for rapid assessment of Mohs layers for BCC presence. However, for fullāface specimens, further work is required to improve the contact between the tissue and the coverslip to increase sensitivity
High PD-1/PD-L1 Checkpoint Interaction Infers Tumor Selection and Therapeutic Sensitivity to Anti-PD-1/PD-L1 Treatment
Many cancers are termed immunoevasive due to expression of immunomodulatory ligands. Programmed death ligand-1 (PD-L1) and cluster of differentiation 80/86 (CD80/86) interact with their receptors, programmed death receptor-1 (PD-1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4), respectively, on tumor-infiltrating leukocytes eliciting immunosuppression. Immunotherapies aimed at blocking these interactions are revolutionizing cancer treatments, albeit in an inadequately described patient subset. To address the issue of patient stratification for immune checkpoint intervention, we quantitatively imaged PD-1/PD-L1 interactions in tumor samples from patients, employing an assay that readily detects these intercellular protein-protein interactions in the less than or equal to 10 nm range. These analyses across multiple patient cohorts demonstrated the intercancer, interpatient, and intratumoral heterogeneity of interacting immune checkpoints. The PD-1/PD-L1 interaction was not correlated with clinical PD-L1 expression scores in malignant melanoma. Crucially, among anti-PD-1-treated patients with metastatic non-small cell lung cancer, those with lower PD-1/PD-L1 interaction had significantly worsened survival. It is surmised that within tumors selecting for an elevated level of PD-1/PD-L1 interaction, there is a greater dependence on this pathway for immune evasion and hence, they exhibit more impressive patient response to intervention. SIGNIFICANCE: Quantitation of immune checkpoint interaction by direct imaging demonstrates that immunotherapy-treated patients with metastatic NSCLC with a low extent of PD-1/PD-L1 interaction show significantly worse outcome.This work was supported, in part, by Department of Education, Basque Government- IT1270-19, Elkartek grant (BG18), and the Spanish Ministry grant (MINECO) PROJECTS of EXCELLENCE (BFU2015-65625-P). P.J. Parker was supported by a core grant to the Francis Crick Institute, from Cancer Research UK (FC001130), the UK Medical Research Council (FC001130), and the Wellcome Trust (FC001130).Peer reviewe
Immune-Instructive Polymers Control Macrophage Phenotype and Modulate the Foreign Body Response InĀ Vivo
Ā© 2020 The Author(s) Implantation of medical devices can result in inflammation. A large library of polymers is screened, and a selection found to promote macrophage differentiation towards pro- or anti-inflammatory phenotypes. The bioinstructive properties of these materials are validated within a rodent model. By identifying novel materials with immune-instructive properties, the relationship between material-immune cell interactions could be investigated, and this offers exciting possibilities to design novel bioinstructive materials that can be used for numerous clinical applications including medical implants
Ran GTPase is an independent prognostic marker in malignant melanoma which promotes tumour cell migration and invasion
Aims Ran GTPase is involved in nucleocytoplasmic shuttling of proteins and is overexpressed in several cancers. The expression of Ran in malignant melanoma (MM) and its functional activity have not been described and were investigated in this study.Methods The prognostic value of Ran expression was tested in a series of 185 primary cutaneous MM cases using immunohistochemistry. The functional activity of Ran was investigated in the two melanoma cell lines. Ran expression was knocked down using two siRNAs and the effect on the expression of the c-Met oncogene, a potential downstream target of Ran, was tested. Functional effects of Ran knockdown on cell motility and cell proliferation were also assessed.Results Positive Ran expression was seen in 12.4% of MM and was associated with advanced clinical stage and greater Breslow thickness. Positive expression was an independent marker of shorter overall survival (p=0.023). Knockdown of Ran results in decreased expression of c-Met and the downstream c-met signalling targets ERK1/2. There was a significant reduction in cell migration (p [less than] 0.001) and cell invasion (p [less than] 0.001). c-Met knockdown decreased the expression of Ran through MAPK and PI3K-AKT in A375 cell line, inhibited the cell viability and migration of both A375 and G361 melanoma cell lines while invasion was enhanced.Conclusion Ran is a poor prognostic marker in cutaneous MM. It upregulates expression of the oncogene c-Met and, possibly through this, it promotes cell motility which may in turn promote metastasis
MYC functions are specific in biological subtypes of breast cancer and confers resistance to endocrine therapy in luminal tumours.
BACKGROUND: MYC is amplified in approximately 15% of breast cancers (BCs) and is associated with poor outcome. c-MYC protein is multi-faceted and participates in many aspects of cellular function and is linked with therapeutic response in BCs. We hypothesised that the functional role of c-MYC differs between molecular subtypes of BCs. METHODS: We therefore investigated the correlation between c-MYC protein expression and other proteins involved in different cellular functions together with clinicopathological parameters, patients' outcome and treatments in a large early-stage molecularly characterised series of primary invasive BCs (n=1106) using immunohistochemistry. The METABRIC BC cohort (n=1980) was evaluated for MYC mRNA expression and a systems biology approach utilised to identify genes associated with MYC in the different BC molecular subtypes. RESULTS: High MYC and c-MYC expression was significantly associated with poor prognostic factors, including grade and basal-like BCs. In luminal A tumours, c-MYC was associated with ATM (P=0.005), Cyclin B1 (P=0.002), PIK3CA (P=0.009) and Ki67 (P<0.001). In contrast, in basal-like tumours, c-MYC showed positive association with Cyclin E (P=0.003) and p16 (P=0.042) expression only. c-MYC was an independent predictor of a shorter distant metastases-free survival in luminal A LN+ tumours treated with endocrine therapy (ET; P=0.013). In luminal tumours treated with ET, MYC mRNA expression was associated with BC-specific survival (P=0.001). In ER-positive tumours, MYC was associated with expression of translational genes while in ER-negative tumours it was associated with upregulation of glucose metabolism genes. CONCLUSIONS: c-MYC function is associated with specific molecular subtypes of BCs and its overexpression confers resistance to ET. The diverse mechanisms of c-MYC function in the different molecular classes of BCs warrants further investigation particularly as potential therapeutic targets
AI is a viable alternative to high throughput screening: a 318-target study
: High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNetĀ® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNetĀ® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery